ニューラル機械翻訳における信頼性を考慮したScheduled sampling

  • Confidence-Aware Scheduled Sampling for Neural Machine Translation [25.4]
    ニューラルマシン翻訳のための信頼度を考慮したスケジュールサンプリングを提案する。 モデル予測の信頼性により,実時間モデル能力の定量化を行う。 提案手法は,翻訳品質と収束速度の両方において,トランスフォーマーとバニラのスケジュールサンプリングを著しく上回っている。
    論文  参考訳(メタデータ)  (Thu, 22 Jul 2021 02:49:04 GMT)
    • 翻訳性能を向上させるスケジュールサンプリングの提案。バニラなTransformer(base / big)に比べて WMT14 EN-DE、EN-FR、WMT19 ZH-ENでそれぞれBLEUで1ポイント程度の改善を報告している。
    • コードはhttps://github.com/Adaxry/conf_aware_ss4nmtから参照可能。

DOVE(Deformable Objects from VidEos): 単一2次元画像からの3次元形状の推定(鳥)

  • DOVE: Learning Deformable 3D Objects by Watching Videos [89.4]
    本研究では,鳥の単一2次元画像から3次元標準形状,変形,視点,テクスチャの予測を学習するDOVEを提案する。 本手法は時間的に一貫した3次元形状と変形を再構成し,任意の視点から鳥をアニメーション化し再レンダリングする。
    論文  参考訳(メタデータ)  参考訳(全文)  (Thu, 22 Jul 2021 17:58:10 GMT)
  • 2次元画像から鳥の3次元形状を得る研究でビデオクリップ(+基本形状などの事前知識+パイプライン)を用いてデータ量の問題を改善しようとするもの。デモのビデオが面白い。
  • Videoはhttps://dove3d.github.io/から確認可能。コードもリリース予定とのこと。