コンテンツへスキップ
- Rethinking Tabular Data Understanding with Large Language Models [39.4]
本研究では,大規模言語モデル(LLM)のテーブル構造摂動に対する堅牢性について検討する。 我々は,同じ内容を示す表の構造的差異が,特に記号的推論タスクにおいて顕著な性能低下を示すことを示した。 テキストおよび記号的推論経路の集約は, 混合自己整合機構によって促進され, SOTA性能が73.6%向上し, WIKITABLEQUESTIONSの精度が向上した。
論文 参考訳(メタデータ) (Wed, 27 Dec 2023 19:58:52 GMT)
- 簡単そうで意外と難しいLLMでテーブルデータを扱うときのテクニックに関する報告。正規化過程では「‘row tables’ with headers in the first column」に変換するとのこと。こちらの形式のほうが処理しやすいのは納得感がある。加えてAppendicesがとても良い。
- YAYI 2: Multilingual Open-Source Large Language Models [53.9]
我々は,300億のパラメータを持つベースモデルとチャットモデルを含むYAYI 2を提案する。 YAYI 2は、トレーニング済みのデータ処理パイプラインによってフィルタされた2.65兆のトークンを含む多言語コーパス上で、スクラッチから事前トレーニングされる。 ベースモデルは、数百万の指示による教師付き微調整と、人間のフィードバックからの強化学習によって、人間の価値と整合する。
論文 参考訳(メタデータ) (Fri, 22 Dec 2023 17:34:47 GMT)
- 多言語対応かつ高性能なLLM YAYI2の論文。YAYI2 30Bは5 shotのMMLUでScore=80.5と高い。学習データのクレンジングからpre train, SFT, RLHFと構築過程も非常に参考になる。
- リポジトリはYAYI2/README_EN.md at main · wenge-research/YAYI2 (github.com、コードはOSSのようだがweightは別途ライセンスが定められている点に注意。
- Retrieval-Augmented Generation for Large Language Models: A Survey [12.6]
Retrieval-Augmented Generation (RAG)は、大きな言語モデルで質問に答える前に、外部知識ベースから関連する情報を検索することを指す。 情報源を引用することで、ユーザーは回答の正確さを確認し、モデルの出力に対する信頼を高めることができる。 本稿では,大規模言語モデルの時代におけるRAGの開発パラダイムについて概説する。
論文 参考訳(メタデータ) (Mon, 18 Dec 2023 07:47:33 GMT)
- 応用例が増加しているRAGのサーベイ
- リポジトリはTongji-KGLLM/RAG-Survey (github.com)、論文へのリンク集も有用
- Gemini: A Family of Highly Capable Multimodal Models [517.1]
マルチモーダルモデルの新たなファミリーであるGeminiは、画像、オーディオ、ビデオ、テキスト理解にまたがる優れた機能を示している。 ファミリーはUltra、Pro、Nanoサイズで構成されており、複雑な推論タスクからオンデバイスメモリに制約のあるユースケースまで幅広い用途に適している。
論文 参考訳(メタデータ) (Tue, 19 Dec 2023 02:39:27 GMT)
- Gemini – arXiv最新論文の紹介 (devneko.jp) の論文、arXiv版。改めて驚きの著者数。
- ReST meets ReAct: Self-Improvement for Multi-Step Reasoning LLM Agent [50.5]
外部知識に基づいて推論と行動を行うReAct-style LLMエージェントを開発した。 エージェントをReSTライクな手法で改良し,従来の軌道上で反復的に訓練する。 引き起こされた大きなモデルから始まり、アルゴリズムのたった2イテレーションの後に、微調整された小さなモデルを生成することができる。
論文 参考訳(メタデータ) (Fri, 15 Dec 2023 18:20:15 GMT)
- Reinforced Self-Training (ReST) を適用したReAct-style LLM agentの提案。ReAct的な動くで作ったtrajectoryのうち良いものを使ってfull fine-tuningとかなりの計算量が必要そうな手法。 少ない回数のイテレーションで良い性能を出せるとのこと。
- 「employing growing-batch reinforcement learning with AI feedback for continuous self-improvement and self-distillation.」とあるが、自分で学んでいけるAIがてきつつあるんじゃないかという気もする。
- Using Large Language Models for Hyperparameter Optimization [31.5]
本稿では,高パラメータ最適化(HPO)において,基礎的大言語モデル(LLM)を用いて決定を行う。 実験的な評価により,LLMは従来のHPO法と同等あるいは同等に動作可能であることが示された。
論文 参考訳(メタデータ) (Thu, 7 Dec 2023 18:46:50 GMT)
- LLMを用いたハイパーパラメータのチューニング、「LLMs provide useful feedback for the error messages, which is infeasible with traditional approaches. 」というのはLLMの利点(直後に「However, this can suffer from the challenges that affect current language models, such as hallucinations」ともあるが。。。)。
- LLM360: Towards Fully Transparent Open-Source LLMs [89.1]
LLM360の目標は、すべての人がエンドツーエンドのトレーニングプロセスを透過的かつ再現可能にすることで、オープンで協力的なAI研究を支援することである。 LLM360の最初のステップとして、スクラッチから事前トレーニングされた2つの7BパラメータLSM、AmberとCrystalCoder、トレーニングコード、データ、中間チェックポイント、分析をリリースする。
論文 参考訳(メタデータ) (Mon, 11 Dec 2023 17:39:00 GMT)
- オープンなLLMを作ろうという取り組み。AMBER: 7B English LLM pretrained on 1.3T tokens CRYSTALCODER: 7B English and code LLM pretrained on 1.4T tokensをリリース
- プロジェクトサイトはLLM360 | Open-source LLMs for Transparency, Trust, and Collaborative Research 🚀
- Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models [105.5]
人為的なデータに基づく微調整言語モデル(LM)が普及している。 我々は、スカラーフィードバックにアクセス可能なタスクにおいて、人間のデータを超えることができるかどうか検討する。 ReST$EM$はモデルサイズに好適にスケールし、人間のデータのみによる微調整を大幅に上回っていることがわかった。
論文 参考訳(メタデータ) (Tue, 12 Dec 2023 23:16:16 GMT)
- LLMへの合成データ適用が有効か検証した論文。生成→フィルタ→finetune→生成→・・・という自己学習形式。
- 数学やコード生成で有効なのはそうなのかなと思う。limitationとして挙がっていた「Second, ReST𝐸𝑀 also requires access to a manually-designed or learned reward function, ideally one that can be computed automatically.」は重要。