コンテンツへスキップ
- On Large Language Models’ Selection Bias in Multi-Choice Questions [117.7]
大規模言語モデル(LLM)の研究において、MCQ(Multi-choice Question)は一般的だが重要なタスク形式として機能する。 我々の研究は、LCMがMCQに固有の「選択バイアス」を示すことを示している。 選択バイアスを軽減するためにPriDeと呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (Thu, 7 Sep 2023 17:44:56 GMT)
- 多肢選択問題で回答の位置によりLLMの性能が変わることが知られている(For instance, moving the golden answers to position D degrades the accuracy of gpt-3.5-turbo by 6.3 (from 67.2 to 60.9))。この報告ではそのバイアスを軽減する手法 PriDe(Debiasing with Prior estimation)を提案している。
- 「It cannot be mitigated via basic prompting strategies (§2.5), such as explicit debiasing instruction (i.e., instructing LLMs to treat each option fairly) and Chain-of-Thought prompting (Wei et al , 2022).」や「We find that removing option IDs can debias LLMs,」というのも面白い。正しくバイアス除去を行うと全体的なパフォーマンスも向上するよう。
- Baseline Defenses for Adversarial Attacks Against Aligned Language Models [109.8]
我々は,大規模言語モデルに対する主要な敵攻撃に対するベースライン防衛戦略を評価した。 検出(複雑度に基づく)、入力前処理(言い換えと再帰化)、対人訓練の3種類の防衛について検討する。 驚くべきことに、他のドメインで予想されるよりも、フィルタリングや前処理で成功しています。
論文 参考訳(メタデータ) (Fri, 1 Sep 2023 17:59:44 GMT)
- LLMへの攻撃に対する対応に関する研究、detection (perplexity based), input preprocessing (paraphrase and retokenization), adversarial trainingが対象
- 「Interestingly, in this initial analysis, we find much more success with filtering and preprocessing strategies than in the vision domain, and that adaptive attacks against such defenses are non-trivial.」「The domain of LLMs is appreciably different from “classical” problems in adversarial machine learning.」という記載が印象的。