コンテンツへスキップ
- Simultaneous Machine Translation with Large Language Models [51.5]
大規模言語モデル(LLM)は、様々な自然言語処理タスクを解く能力を示した。 我々は,LSMが追加の訓練を必要とせずにSimulMTに参加することができる簡易かつ効果的な混合政策を導入する。 Llama2-7B-chatでMUST-Cデータセットから9つの言語ペアを用いて行った実験は、LLMが専用のSimulMTモデルに匹敵する翻訳品質とレイテンシを実現できることを示した。
論文 参考訳(メタデータ) (Wed, 13 Sep 2023 04:06:47 GMT)
- simultaneous machine translationにLLMを用いる研究。Reading Policy、Writing Policyは既存研究のものがベース、Finetuningを行うことで優れた性能を出せるとのこと。
- Benchmarking Large Language Models in Retrieval-Augmented Generation [53.5]
大規模言語モデルに対する検索拡張生成の影響を系統的に検討する。 我々は、RAGに必要な4つの基本能力で、異なる大規模言語モデルの性能を解析する。 RGB(Retrieval-Augmented Generation Benchmark)は、英語と中国語の両方でRAG評価を行うための新しいコーパスである。
論文 参考訳(メタデータ) (Mon, 4 Sep 2023 08:28:44 GMT)
- LLM活用に欠かせないRAG能力をnoise robustness, negative rejection, information integration, counterfactual robustnessと整理、ベンチマークを構築。英語と中国語が対象。
- リポジトリはGitHub – chen700564/RGB