DiffuCoder: Understanding and Improving Masked Diffusion Models for Code Generation

  • DiffuCoder: Understanding and Improving Masked Diffusion Models for Code Generation [68.2]
    拡散大言語モデル(dLLM)は自己回帰(AR)モデルの魅力的な代替品である。 本研究は,それらの認知過程と強化学習手法について考察する。 我々の研究は、dLLM生成のメカニズムについて深い洞察を与え、効果的な拡散ネイティブなRLトレーニングフレームワークを提供します。
    論文  参考訳(メタデータ)   (Thu, 26 Jun 2025 15:46:40 GMT)
  • ARモデルとの挙動の差が興味深い論文。「Reinforcement learning (RL) and GRPO (Shao et al , 2024) have proven critical for enhancing AR models (Bercovich et al , 2025; Shao et al , 2025), but their application to dLLMs is less explored.」としたうえでDiffusion model用のCoupled-GRPOを提案。
  • リポジトリはhttps://github.com/apple/ml-diffucoder

Any-Order GPT as Masked Diffusion Model: Decoupling Formulation and Architecture 

Discrete Diffusion in Large Language and Multimodal Models: A Survey

  • Discrete Diffusion in Large Language and Multimodal Models: A Survey [56.3]
    離散拡散言語モデル(dLLM)と離散拡散多モード言語モデル(dMLLM)の体系的調査を提供する。 自己回帰(AR)モデルとは異なり、dLLMとdMLLMはマルチトークンの並列デコードパラダイムを採用している。 我々は、dLLMとdMLLMの歴史的発展を辿り、基礎となる数学的枠組みを定式化し、代表モデルを分類する。
    論文  参考訳(メタデータ)   (Mon, 16 Jun 2025 17:59:08 GMT)
  • Discrete Diffusion Language Models (dLLMs) とDiscrete Diffusion Multimodal Language Modelsのサーベイ
  • 全盛のAutoregressiveモデルとの関係・差異が興味深い。