コンテンツへスキップ
- Continual Learning: Applications and the Road Forward [111.3]
継続的学習は、機械学習モデルが、過去に学んだことを忘れずに知識を蓄積することで、新しいデータを継続的に学習できるようにすることを目的としている。 我々は3つの主要な機械学習カンファレンスで発行された最近の連続的な学習論文を調査してステージを設定した。 機械学習における5つのオープンな問題について議論し、継続的学習が必然的にそのソリューションの一部であることを示す。
論文 参考訳(メタデータ) (Tue, 21 Nov 2023 15:17:00 GMT)
- Continual Learningのサーベイ、講演資料が基になっているからか基礎からわかりやすい印象。
- A Reevaluation of Event Extraction: Past, Present, and Future Challenges [136.7]
イベント抽出は近年、多くの応用の可能性から多くの注目を集めている。 最近の研究では、いくつかの評価課題が観察されており、報告されたスコアは真のパフォーマンスを反映していない可能性があることを示唆している。 イベント抽出のための標準化された公正かつ再現可能なベンチマークであるTEXTEEを提案する。
論文 参考訳(メタデータ) (Thu, 16 Nov 2023 04:43:03 GMT)
- Event Extractionのサーベイとベンチマークの提案。以前の評価の問題点の一個目が「Unfair comparison」、「Due to the lack of a standardized evaluation framework, we observe that many approaches are inappropriately compared in the previous literature.」とかなり厳しめ。
- LLM関連として Llama-2-13B、GPT3.5-turboの結果も記載されているが、特化型モデルと比べて低いスコアとなっている。
- リポジトリはGitHub – ej0cl6/TextEE: A standardized, fair, and reproducible benchmark for evaluating event extraction approaches
- Towards more Practical Threat Models in Artificial Intelligence Security [71.5]
我々は、AIセキュリティ研究で最も研究されている6つの攻撃の脅威モデルを再検討し、実際にAIの使用と一致させる。 我々の論文は、人工知能のセキュリティにおけるより実用的な脅威モデルを研究するための行動である。
論文 参考訳(メタデータ) (Thu, 16 Nov 2023 16:09:44 GMT)
- AIセキュリティに関して研究と実際の差を分析した論文。key findingsを見るだけでも結構なギャップがありそう。。。
- Emotion Detection for Misinformation: A Review [23.5]
本稿では、誤情報検出のための感情に基づく手法を包括的にレビューする。 本研究では,様々な感情,感情,姿勢に基づく特徴を用いた誤情報検出手法の解析を行う。 本稿では,大規模言語モデルに基づく感情に基づく誤情報検出において,現在進行中の課題について論じる。
論文 参考訳(メタデータ) (Wed, 1 Nov 2023 17:21:09 GMT)
- 感情を軸とした誤情報見地に関するサーベイ
- On the Opportunities of Green Computing: A Survey [80.2]
人工知能(AI)は数十年にわたり、技術と研究において大きな進歩を遂げてきた。 高いコンピューティングパワーの必要性は、より高い二酸化炭素排出量をもたらし、研究の公正性を損なう。 コンピューティングリソースの課題とAIの環境への影響に取り組むため、グリーンコンピューティングはホットな研究トピックとなっている。
論文 参考訳(メタデータ) (Thu, 9 Nov 2023 03:08:34 GMT)
- これから重要なGreen Computingのサーベイ。「The latest version of Generative Pre-trained Transformers GPT-4 with 1.8 trillion parameters, can emit between 12,456 and 14,994 metric tons CO2e if it was trained on normal grid electricity in California,」とのこと。排出権買うだけで1億円以上と考えてよいんだろうか。
- Towards Possibilities & Impossibilities of AI-generated Text Detection: A Survey [97.3]
大規模言語モデル(LLM)は、自然言語処理(NLP)の領域に革命をもたらし、人間のようなテキスト応答を生成する能力を持つ。 これらの進歩にもかかわらず、既存の文献のいくつかは、LLMの潜在的な誤用について深刻な懸念を提起している。 これらの懸念に対処するために、研究コミュニティのコンセンサスは、AI生成テキストを検出するアルゴリズムソリューションを開発することである。
論文 参考訳(メタデータ) (Mon, 23 Oct 2023 18:11:32 GMT)
- AIが作ったテキストを検出できるか否かに関するサーベイ。DetectionとAttackの2方向から網羅的に調査しているので研究のアプローチが分かりやすい一方で著者が主張するスコアを並べるような調査にはなっていない。
- 「Specifically, Liang et al (2023) observe perplexitybased detectors having a high misclassification rate for non-native authored TOEFL essays despite being nearly perfectly accurate for college essays authored by native speakers.」のような話はとても重要。fugumt.comで全文訳提供をやめた理由の一つが某剽窃チェッカーの誤判定に関する問い合わせが多く来たことであり、この手のツールを社会実装する場合はその責任を自覚してほしいと思う。最終判断はユーザに任せているという内容の(たいして読まれない)EULAで逃げないでほしい。