AutoBencher、A Survey of Data Synthesis Approaches

  • AutoBencher: Creating Salient, Novel, Difficult Datasets for Language Models [84.7]
    3つのデシラタを言語モデルのための優れたベンチマークとして提示する。 ベンチマークでは、以前のベンチマークでは示されていなかったモデルランキングの新しいトレンドが明らかになった。 AutoBencherを使って、数学、多言語、知識集約的な質問応答のためのデータセットを作成しています。
    論文  参考訳(メタデータ)   (Thu, 11 Jul 2024 10:03:47 GMT)
  • ベンチマークを自動的に構築する取り組み。
  • しばらくするとベンチマークを自動構築、後述のような方法でデータも自動合成、自己改善、みたいなモデル構築が流行ったりするのだろうか。まさにAutoML。
  • リポジトリはGitHub – XiangLi1999/AutoBencher
  • A Survey of Data Synthesis Approaches [20.2]
    1)多様性の向上,2)データバランシング,3)ドメインシフトへの対応,4)エッジケースの解決。 本稿では, 合成データの今後の方向性と, 重要な3つの方向性についても論じる: 1) 品質, 2) 合成データの評価, 3) マルチモデルデータ拡張。
    論文  参考訳(メタデータ)   (Thu, 04 Jul 2024 06:37:09 GMT)
  • 合成データ関連のサーベイ。
  • リポジトリはGitHub – MiuLab/SynData-Survey

A Survey on Privacy Attacks Against Digital Twin Systems in AI-Robotics 

  • A Survey on Privacy Attacks Against Digital Twin Systems in AI-Robotics [4.3]
    産業 4.0 は、人工知能/機械学習(AI/ML)とデジタルツイン(DT)技術の統合によって、複雑なロボットが台頭するのを目撃している。 本稿では,AIモデルとDTモデルによって実現されたロボットを対象としたプライバシ攻撃について調査する。
    論文  参考訳(メタデータ)   (Thu, 27 Jun 2024 00:59:20 GMT)
  • デジタルツインに着目した攻撃に関するサーベイ
  • 想定しているフレームワークは「Physical spaces comprise robotic sensors that collect data.Virtual space utilizes the data collected from physical space via a communication link between them.Predictions are generated by the AI models within vitual space, which are then analyzed before decisions are made by stakeholders.」

A Survey on Safe Multi-Modal Learning System

  • A Survey on Safe Multi-Modal Learning System [10.9]
    マルチモーダル学習システム(MMLS)は、様々なモーダル入力から情報を処理し統合する能力で注目を集めている。 安全に関する体系的な研究が欠如していることは、この分野の進歩にとって重要な障壁である。 MMLSの安全性を体系的に分類し評価する最初の分類法を提案する。
    論文  参考訳(メタデータ)   (Tue, 25 Jun 2024 05:42:43 GMT)
  • マルチモーダルなシステムに対する安全性のサーベイ
  • この手の対策が必要になってきたことに進化を感じる

A Survey of Multimodal-Guided Image Editing with Text-to-Image Diffusion Models

  • A Survey of Multimodal-Guided Image Editing with Text-to-Image Diffusion Models [117.8]
    画像編集は、ユーザーが特定の要求を満たすために、与えられた合成画像または実際の画像を編集することを目的としている。 この分野での最近の顕著な進歩は、テキスト・ツー・イメージ(T2I)拡散モデルの開発に基づいている。 T2Iベースの画像編集手法は、編集性能を大幅に向上させ、マルチモーダル入力でガイドされたコンテンツを修正するためのユーザフレンドリーなインタフェースを提供する。
    論文  参考訳(メタデータ)   (Thu, 20 Jun 2024 17:58:52 GMT)
  • 画像編集に関するサーベイ、引用数が300を超える包括的内容、GitHub – xinchengshuai/Awesome-Image-Editingとリポジトリも公開されている。

On LLMs-Driven Synthetic Data Generation, Curation, and Evaluation: A Survey

  • On LLMs-Driven Synthetic Data Generation, Curation, and Evaluation: A Survey [26.7]
    大規模言語モデル(LLM)は、合成データ生成による現実世界のデータ制限を軽減するために、データ中心のソリューションを提供する。 本稿では、合成データ生成の一般的なワークフローに基づく、関連する研究の組織を提供する。
    論文  参考訳(メタデータ)   (Fri, 14 Jun 2024 07:47:09 GMT)
  • 合成データ生成の汎用ワークフローに関するサーベイ

A Survey on Compositional Learning of AI Models: Theoretical and Experimetnal Practices 

  • A Survey on Compositional Learning of AI Models: Theoretical and Experimetnal Practices [15.9]
    構成学習は人間の認知、特に人間の言語理解と視覚知覚において重要である。 インテリジェンスにおいて重要な役割を担っているにもかかわらず、体系的な理論的、実験的研究方法論が欠如している。 本稿では,AIモデルの構成学習に関する文献と,認知研究との関わりについて考察する。
    論文  参考訳(メタデータ)   (Thu, 13 Jun 2024 03:46:21 GMT)
  • Compositional learning(「mastering the ability to combine basic concepts and construct more intricate ones」)のサーベイ。

A Survey of Transformer Enabled Time Series Synthesis 

  • A Survey of Transformer Enabled Time Series Synthesis [38.9]
    生成AIは画像と言語領域で多くの注目を集めている。 本稿では,変換器,生成AI,時系列データの交点におけるこのギャップを明らかにする。 レビューされた研究はアプローチの多様さを示しており、ドメインがもたらす問題に対する決定的な回答にはまだ収束していない。
    論文  参考訳(メタデータ)   (Tue, 04 Jun 2024 13:52:42 GMT)
  • Transformerと時系列データに関するサーベイ
  • TNNでtransformer neural network はあまり見ない略し方

Memorization in deep learning: A survey 

  • Memorization in deep learning: A survey [26.7]
    近年の研究では、Deep Neural Networks(DNN)が一般的なパターンを学習するのではなく、例から特定の詳細を記憶する傾向にある興味深い現象が明らかになった。 これにより、DNNにおける一般化の性質と、セキュリティ侵害に対する感受性に関する批判的な疑問が提起される。 一般化とセキュリティ/プライバシドメインに基づく記憶定義を整理するための体系的枠組みを提案する。
    論文  参考訳(メタデータ)   (Thu, 06 Jun 2024 09:17:40 GMT)
  • DNNにおける記憶(、知識)についてのサーベイ
  • 著作権の観点で一般化しているのか丸暗記しているのか、実用の観点では個別の記憶を持たせられるのか編集出来るのかなど、様々な観点で重要な性質であり、まとまったサーベイはありがたい。

Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions

  • Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.7]
    近年のAIの進歩は、AIシステムを意図された目標、倫理的原則、個人とグループの価値に向けて導くことの重要性を強調している。 人間のAIアライメントの明確な定義とスコープの欠如は、このアライメントを達成するための研究領域間の共同作業を妨げる、大きな障害となる。
    論文  参考訳(メタデータ)   (Thu, 13 Jun 2024 16:03:25 GMT)
  • AI アライメントに関するサーベイで400以上の文献を調査した包括的なもの。Overall Author List and Contributions からの幅広い分野の方が調査に参加している。
  • 個人的には「Challenge 3: Safeguarding Co-adaptation」の「As advanced AI systems become increasingly complex, they present greater challenges for human interpretation and control. To address this, it is crucial to empower humans to detect and interpret AI misconduct on instrumental actions towards accomplishing its final goals.」が興味深かった。未来的ではあるが、本当に制御できるのか若干疑問。

A Survey on Medical Large Language Models: Technology, Application, Trustworthiness, and Future Directions

  • A Survey on Medical Large Language Models: Technology, Application, Trustworthiness, and Future Directions [31.0]
    大規模言語モデル(LLM)は、人間レベルの言語の生成と理解に優れた能力があることから、大きな注目を集めている。 LLMは医療分野において革新的で強力なアドジャンクとして出現し、伝統的なプラクティスを変革し、医療サービス強化の新しい時代を告げている。
    論文  参考訳(メタデータ)   (Thu, 06 Jun 2024 03:15:13 GMT)
  • 医療分野へのLLM応用のサーベイ
  • 医療はNLPの応用先として有力な分野。この分野での状況はLLMの応用全般がどうなっていくか考えるうえでも興味深い。