Alignment for Honesty

  • Alignment for Honesty [113.4]
    我々は、正直に整合することの重要性を主張し、言語モデルが知識が欠如している場合に、積極的に質問に答えることを拒否します。 この課題は、メトリクス開発、ベンチマーク作成、トレーニングという観点で包括的なソリューションを必要とする。 正直さを強調する複数の効率的な微調整技術によってさらにインスタンス化されるフレキシブルなトレーニングフレームワークを導入する。
    論文  参考訳(メタデータ)   (Tue, 12 Dec 2023 06:10:42 GMT)
  • 分からないときは分からない(質問に答えない)ようにするフレームワークの提案。メトリクスの定義や検証など参考になる点も多い。
  • リポジトリはGitHub – GAIR-NLP/alignment-for-honesty

CyberSecEval

  • Purple Llama CyberSecEval: A Secure Coding Benchmark for Language Models [41.1]
    本稿では,Large Language Models (LLMs) のプログラミングアシスタントとしてのサイバーセキュリティを促進するために開発された,包括的なベンチマークであるCyberSecEvalを提案する。 CyberSecEvalは、2つの重要なセキュリティ領域におけるLSMの徹底的な評価を提供する。
    論文  参考訳(メタデータ)   (Thu, 7 Dec 2023 22:07:54 GMT)
  • セキュリティ関連のベンチマークとして「安全でないコードの生成」「サイバー攻撃の支援に対するコンプライアンス」を評価するもの。Purple Llama CyberSecEval: A benchmark for evaluating the cybersecurity risks of large language models | Research – AI at Metaの立ち上げに伴うもの。
  • 「On average, LLMs suggested vulnerable code 30% of the time over CYBERSECEVAL ’s test cases. Furthermore, models complied with 53% of requests to assist in cyberattacks on average across all models and threat categories.」とのことで道はながそう。GPT-4であれば大丈夫という結果でもない。
  • リポジトリはPurpleLlama/CybersecurityBenchmarks at main · facebookresearch/PurpleLlama · GitHub

CogAgent

  • CogAgent: A Visual Language Model for GUI Agents [40.2]
    GUI理解とナビゲーションに特化した視覚言語モデル(VLM)であるCogAgentを紹介する。 低解像度画像エンコーダと高解像度画像エンコーダの両方を利用することで、CogAgentは1120*1120の解像度で入力をサポートする。 CogAgentは、VQAv2、OK-VQA、Text-VQA、ST-VQA、ChartQA、 infoVQA、DocVQA、MM-Vet、POPEを含む5つの一般的なVQAベンチマークで、技SoTAを達成している。
    論文  参考訳(メタデータ)   (Thu, 14 Dec 2023 13:20:57 GMT)
  • GUIを理解し実行するためのAgent、複数のVQAベンチマークでもSoTAを主張
  • リポジトリはGitHub – THUDM/CogVLM: a state-of-the-art-level open visual language model | 多模态预训练模型

LLM as OS (llmao), Agents as Apps: Envisioning AIOS, Agents and the AIOS-Agent Ecosystem

  • LLM as OS (llmao), Agents as Apps: Envisioning AIOS, Agents and the AIOS-Agent Ecosystem [48.8]
    本稿では,Large Language Model(LLM)がIOS(Artificial Intelligent Operating System)として機能する,革命的なAIOS-Agentエコシステムを構想する。 LLMの影響はAIアプリケーションレベルに限らず、コンピュータシステム、アーキテクチャ、ソフトウェア、プログラミング言語の設計と実装に革命をもたらすものと期待している。
    論文  参考訳(メタデータ)   (Wed, 6 Dec 2023 18:50:26 GMT)
  • LLMをAI用のOSと捉えた時、既存OSとの対比やそれが実現した時の将来について整理した論文。刺激的な内容で面白い。

Multimodal Large Language Models: A Survey

  • Multimodal Large Language Models: A Survey [36.1]
    マルチモーダル言語モデルは、画像、テキスト、言語、音声、その他の異種性など、複数のデータタイプを統合する。 本稿では、マルチモーダルの概念を定義し、マルチモーダルアルゴリズムの歴史的展開を検討することから始める。 実用的なガイドが提供され、マルチモーダルモデルの技術的な側面に関する洞察を提供する。 最後に,マルチモーダルモデルの適用について検討し,開発に伴う課題について考察する。
    論文  参考訳(メタデータ)   (Wed, 22 Nov 2023 05:15:12 GMT)
  • マルチモーダルな大規模言語モデルのサーベイ、いろいろあるなというのとテクニカルに重要なポイントがまとまっているのがうれしい。

TaskWeaver

  • TaskWeaver: A Code-First Agent Framework [51.8]
    TaskWeaverは、LLMで動く自律エージェントを構築するためのコードファーストフレームワークである。 ユーザ要求を実行可能なコードに変換し、ユーザ定義プラグインを呼び出し可能な関数として扱う。 リッチなデータ構造、フレキシブルなプラグイン利用、動的プラグイン選択のサポートを提供する。
    論文  参考訳(メタデータ)   (Fri, 1 Dec 2023 07:42:56 GMT)
  • ChatGPT + Advanced data analyticsのような動作をするフレームワークの提案。リポジトリにあるビデオが分かりやすい。
  • リポジトリはGitHub – microsoft/TaskWeaver: A code-first agent framework for seamlessly planning and executing data analytics tasks.

Competition-Level Problems are Effective LLM Evaluators

  • Competition-Level Problems are Effective LLM Evaluators [124.8]
    本稿では,Codeforcesにおける最近のプログラミング問題の解決において,大規模言語モデル(LLM)の推論能力を評価することを目的とする。 まず,問題の発生時間,難易度,遭遇したエラーの種類など,様々な側面を考慮して,GPT-4の望ましくないゼロショット性能を総合的に評価する。 驚くべきことに、GPT-4のTheThoughtivedのパフォーマンスは、2021年9月以降、あらゆる困難と種類の問題に対して一貫して問題が減少するような崖を経験している。
    論文  参考訳(メタデータ)   (Tue, 5 Dec 2023 03:44:19 GMT)
  • LLMのデータ汚染問題を検証するためにCodeforceの問題を利用。「We find a significant decrease in perceived performance of GPT-4 on unseen problems, consistent across a range of difficulties, problem types, and experimental settings.」という結果でなかなか衝撃的。
  • 別の検証でも似たような指摘はあったし、Geminiのテクニカルレポートでも「 Evaluation on these benchmarks is challenging and may be affected by data contamination.We performed an extensive leaked data analysis after training to ensure the results we report here are as scientifically sound as possible, but still found some minor issues and decided not to report results on e g LAMBADA (Paperno et al , 2016).(gemini_1_report.pdf (storage.googleapis.com))」という指摘がある。正しい評価は難しい。

Gemini

先週の大きな話題としてGeminiの発表があった。非常に性能の高いマルチモーダルなLLM
Google Japan Blog: 最大かつ高性能 AI モデル、Gemini を発表 – AI をすべての人にとってより役立つものに (googleblog.com)

動画もテクニカルノート(gemini_1_report.pdf (storage.googleapis.com))の興味深いが、「We trained two versions of Nano, with 1.8B (Nano-1) and 3.25B (Nano-2) parameters, targeting low and high memory devices respectively.」という3B程度ではNano扱いというのもびっくり。BERT LARGEの10倍の規模なんだけど…と思うと進化の速さがよくわかる。

OneLLM

  • OneLLM: One Framework to Align All Modalities with Language [90.1]
    統一フレームワークを用いて8つのモーダルを言語に整合させるMLLMであるOneLLMを提案する。 OneLLMは25の多様なベンチマークで評価され、マルチモーダルキャプション、質問応答、推論などのタスクを含む。
    論文  参考訳(メタデータ)   (Wed, 6 Dec 2023 18:59:19 GMT)
  • マルチモーダルなLLMの提案、image, audio, video, point cloud, depth/normal map, IMU and fMRI brain activityとあまり見ないモーダルにも対応。Universal Encoder → Universal Projection Module → LLMなアーキテクチャでEncoderはFrozenとのこと。様々なベンチマークで高い性能を発揮。
  • リポジトリはGitHub – csuhan/OneLLM: OneLLM: One Framework to Align All Modalities with Language

mPLUG-PaperOwl

  • mPLUG-PaperOwl: Scientific Diagram Analysis with the Multimodal Large Language Model [73.4]
    本研究はマルチモーダルLLMのマルチモーダルダイアグラム解析機能を強化することに焦点を当てる。 高品質な論文のLatexソースファイルを解析することにより、マルチモーダルなダイアグラム理解データセットM-Paperを慎重に構築する。 M-Paperは、画像やラテックス符号のフォーマットの数字や表を含む、複数の科学的図の合同理解をサポートする最初のデータセットである。
    論文  参考訳(メタデータ)   (Thu, 30 Nov 2023 04:43:26 GMT)
  • 学術論文の図表を含むドキュメントを読解するためのデータ・モデルの提案、latexが取れるというのも大きいのだろうけど、分野特化は非常に有効に見える
  • リポジトリはmPLUG-DocOwl/PaperOwl at main · X-PLUG/mPLUG-DocOwl · GitHub