GenTranslate

InfLLM

  • InfLLM: Unveiling the Intrinsic Capacity of LLMs for Understanding Extremely Long Sequences with Training-Free Memory [99.2]
    InfLLMは、リモートコンテキストを追加のメモリユニットに格納し、トークン関連ユニットを注目するために効率的なメカニズムを使用する。 本稿では,LLMのストリーミング長列処理能力を明らかにするために,トレーニング不要なメモリベースのInfLLMを提案する。
    論文  参考訳(メタデータ)   (Wed, 7 Feb 2024 06:50:42 GMT)
  • 長文に対応するための構造をもったLLM、1024Kトークでも有効とのこと

Can LLMs Produce Faithful Explanations For Fact-checking? Towards Faithful Explainable Fact-Checking via Multi-Agent Debate

  • Can LLMs Produce Faithful Explanations For Fact-checking? Towards Faithful Explainable Fact-Checking via Multi-Agent Debate [75.1]
    大規模言語モデル(LLM)はテキスト生成に優れるが、事実チェックにおいて忠実な説明を生成する能力は依然として過小評価されている。 多様な役割を持つエージェントとして複数のLSMを利用するマルチエージェント・デベート・リファインメント(MADR)フレームワークを提案する。 MADRは、最終的な説明が厳密な検証を行い、不誠実な要素の可能性を著しく低減し、提示された証拠と密接に一致させることを保証する。
    論文  参考訳(メタデータ)   (Mon, 12 Feb 2024 04:32:33 GMT)
  • 「Our findings reveal that zero-shot prompting LLMs often fails to yield faithful explanations.80% of the generated explanations include hallucinated details.」なので、Multi-Agent Debate Refinement によって改善したという報告。ベースラインより改善しているが、まだまだ厳しい結果に思える。
  • 「LLMs cannot reliably assess the faithfulness of the generated explanations and discover the most suitable evaluation protocols for LLM-based automatic evaluation」というfindingsは重要

The Generative AI Paradox on Evaluation 

  • The Generative AI Paradox on Evaluation: What It Can Solve, It May Not Evaluate [17.8]
    本稿では,ジェネレーションタスクにおけるLarge Language Models (LLMs) が同等に評価できるという仮定を考察する。 質問応答(QA)における3つのLLMと1つのオープンソースLMの性能評価と,TriviaQAデータセットを用いた評価課題について述べる。
    論文  参考訳(メタデータ)   (Fri, 9 Feb 2024 06:16:08 GMT)
  • 問題解決と評価能力は別なのでは?という問いへの検証。「Results indicate a significant disparity, with LLMs exhibiting lower performance in evaluation tasks compared to generation tasks」とのこと
  • TriviaQA での検証だが、おそらくタスクやデータセットによって異なるんだろうとは思う。評価用に生成AIを使うことは多いがそろそろGPT-4が他を圧倒というわけでもなくなっているので興味深い。

SALAD-Bench:  SAfety evaluation for LLMs, Attack and Defense approaches

  • SALAD-Bench: A Hierarchical and Comprehensive Safety Benchmark for Large Language Models [112.5]
    SALAD-Benchは、大規模言語モデル(LLM)を評価するために特別に設計された安全ベンチマークである。 それは、その大規模な、豊富な多様性、三つのレベルにまたがる複雑な分類、多目的機能を通じて、従来のベンチマークを超越している。
    論文  参考訳(メタデータ)   (Thu, 8 Feb 2024 02:50:22 GMT)
  • LLMに対する攻撃・防御に特化したベンチマーク。GPT-4は優秀ではあるがClaude-2が勝っている場合もあり面白い。
  • リポジトリはOpenSafetyLab/SALAD-BENCH: SALAD benchmark (github.com)

Intention-in-Interaction (IN3)とMistral Interact: ユーザに意図を尋ねるAgent

  • Tell Me More! Towards Implicit User Intention Understanding of Language Model Driven Agents [110.3]
    現在の言語モデル駆動エージェントは、しばしば効果的なユーザ参加のメカニズムを欠いている。 Intention-in-Interaction (IN3) は明示的なクエリを通してユーザの暗黙の意図を検査するための新しいベンチマークである。 私たちは、タスクの曖昧さを積極的に評価し、ユーザの意図を問う強力なモデルであるMistral-Interactを経験的に訓練し、それらを実行可能な目標へと洗練させます。
    論文  参考訳(メタデータ)   (Thu, 15 Feb 2024 09:59:52 GMT)
  • ユーザに意図を問う能力を測るベンチマークの提案と、それを解くモデルの開発。GPT-4はそもそもがかなり強力だが、SFTしたMistral-7Bで迫れるというのは興味深い(full-parameter fine-tuning of Mistral-7B on two 80GB A800s、かかった時間は4.5時間とのこと)
  • リポジトリはHBX-hbx/Mistral-Interact: Repo for paper “Tell Me More! Towards Implicit User Intention Understanding of Language Model Driven Agents” (github.com)

A Survey of Table Reasoning with Large Language Models

  • A Survey of Table Reasoning with Large Language Models [55.2]
    大規模言語モデル(LLM)の使用は、テーブル推論の主流となる。 LLM時代におけるテーブル推論性能の向上に使用される主流技術について分析する。 本研究は,既存手法の改良と実用化の拡充の両面から研究の方向性を示す。
    論文  参考訳(メタデータ)   (Tue, 13 Feb 2024 07:17:52 GMT)
  • LLMで表形式データを扱う場合のサーベイ。実務上扱う場面は多く苦労することも多い。
  • ベンチマーク×アプローチで性能が整理されているのがありがたい。instruction designとin-context learningが有望そうという結果。感覚的には別のモーダルだが、事前学習では相応に取り入れられていてうまくLLMの能力を 引き出すことが重要という感じなんだろうか。

AYA datasetとAYA model

多言語LLMを構築するための取り組み。AYAはトウィ語でシダのことらしい。プロジェクトサイトはAya | Cohere For AI

  • Aya Dataset: An Open-Access Collection for Multilingual Instruction Tuning [49.8]
    既存のデータセットはほとんどが英語で書かれている。 私たちは世界中の言語に精通した話者と協力して、指示と完了の自然な例を集めています。 既存のデータセットを114言語でテンプレート化し、翻訳することで、5億1300万のインスタンスを含む、これまでで最も広範な多言語コレクションを作成します。
    論文  参考訳(メタデータ)   (Fri, 9 Feb 2024 18:51:49 GMT)
  • リポジトリはCohereForAI/aya_collection · Datasets at Hugging Face
  • Aya Model: An Instruction Finetuned Open-Access Multilingual Language Model [33.9]
    Ayaは101言語で命令に従う多言語生成言語モデルであり、50%以上が低リソースであると考えられている。 99言語にまたがる多言語evalの最先端性を広げる広範な評価スイートを導入する。 我々は、最適微調整混合物組成、データプルーニング、およびモデルの毒性、バイアス、安全性について詳細な調査を行う。
    論文  参考訳(メタデータ)   (Mon, 12 Feb 2024 17:34:13 GMT)
  • リポジトリはCohereForAI/aya-101 · Hugging Face

SORAとGemini-1.5

先週話題となったニュースにテキストからのビデオ生成モデルであるOpenAIのSORA、極めて長いテキストを扱えるGoogleのGemini 1.5がある。両発表とも技術が一段進化した感がある。

Reka(Reka Flash: An Efficient and Capable Multimodal Language Model – Reka AI)のようなチャレンジャーも出てきていてニュースが多い。

  • Gemini 1.5: Unlocking multimodalunderstanding across millions of tokens ofcontext
    Gemini 1.5 Proは、きめ細かい情報をリコールして推論できる計算効率の高いマルチモーダル混合モデルである。モダリティ間の長いコンテキスト検索タスクのほぼ完璧なリコールを実現する。Gemini 1.0 Ultraの最先端のパフォーマンスを、幅広いベンチマークで比較または上回る。
  • 長文を扱える能力が高くTF-IDF での検索+re rankを行うパイプライン構成をとった場合を大きく超える性能。そして、旧Twitterでも紹介されていた「With only instructional materials (500 pages of linguistic documentation, a dictionary, and ≈ 400 parallel sentences) all provided in context, Gemini 1.5 Pro is capable of learning to translate from English to Kalamang, a language spoken by fewer than 200 speakers in western New Guinea in the east of Indonesian Papua2, and therefore almost no online presence.」が衝撃的。
  • gemini_v1_5_report.pdf (storage.googleapis.com)

ReadAgent 

  • A Human-Inspired Reading Agent with Gist Memory of Very Long Contexts [38.3]
    本実験では,有効文脈長を最大20倍に向上させるエージェントシステムであるReadAgentを提案する。 人間が長い文書を対話的に読む方法に触発され、簡単なプロンプトシステムとしてReadAgentを実装した。 本稿では,検索手法を用いてベースラインに対するReadAgentの評価を行い,元の長コンテキストを用いて,gistメモリを用いて評価する。
    論文  参考訳(メタデータ)   (Thu, 15 Feb 2024 05:40:21 GMT)
  • 人が長文を読むように一定チャンクごとに要点を保持するGistメモリを使用する方法を提案。ベンチマークで効果を確認とのこと。(BM25って結構優秀だなと別のところも気になった。)
  • リポジトリはA Human-Inspired Reading Agent with Gist Memory of Very Long Contexts (read-agent.github.io)