Long-form factuality in large language models [59.3] 大規模言語モデ ル(LLM)は、しばしば、オープンエンドトピックの事実検索プロンプトに応答するときに、事実エラーを含むコンテンツを生成する。 まず最初にGPT-4を用いて、38のトピックにまたがる何千もの質問からなるプロンプトセットであるLongFactを生成します。 そこで我々は,LLMエージェントを検索拡張現実性評価器 (SAFE) と呼ぶ手法により,長期的事実性の自動評価器として使用できることを提案する。 論文参考訳(メタデータ) (Wed, 27 Mar 2024 17:48:55 GMT)
事実性の間違いを重視したベンチマーク、「SAFE utilizes an LLM to break down a long-form response into a set of individual facts and to evaluate the accuracy of each fact using a multi-step reasoning process comprising sending search queries to Google Search and determining whether a fact is supported by the search results.」「Empirically, we demonstrated that SAFE achieves superhuman performance by agreeing with 72% of human annotations and winning 76% of examples out of a set of 100 randomly-sampled disagreement cases.」とのこと。ベンチマークとしての評価結果はGPT-4-turbo > Gemini Ultra > Calude-3 OPUSでClaude 3 OPUSはハルシネーションが多いのでは?という印象を裏付けていそうに思う。SAFEは評価用だけでなく二次チェックにも有用そう。