Hallucinations in Large Multilingual Translation Models

  • Hallucinations in Large Multilingual Translation Models [70.1]
    大規模多言語機械翻訳システムでは、多数の言語間で直接翻訳できることが顕著に示されている。 野生に配備されると、これらのモデルが幻覚翻訳を生成し、ユーザーの信頼を著しく損なう可能性があり、安全性の懸念が高まる。 幻覚に関する既存の研究は、主に高ソース言語で訓練された小さなバイリンガルモデルに焦点を当てている。
    論文  参考訳(メタデータ)   (Tue, 28 Mar 2023 16:17:59 GMT)
  • 最近よく話題になるHallucinationについて多言語翻訳の観点で分析した論文。ChatGPTの検証も行っている。
  • 多言語翻訳モデルでは(当然ながら)リソースの少ない言語に対してHallucinationが多発するが、ChatGPTではむしろ中リソースの言語に対して問題が多く行るのが興味深い。Hallucinationの緩和としてfallback systemを使う場合、同じトレーニングデータとアーキテクチャを共有するモデルでは効果が薄く別の外部システムを使うことが有効としている。

SelfCheckGPT

  • SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language Models [35.6]
    SelfCheckGPTは、ゼロリソース方式でファクトチェックブラックボックスモデルに対する単純なサンプリングベースアプローチである。 我々は、GPT-3を用いてWikiBioデータセットから個人に関するパスを生成する。 我々は,SelfCheckGPTが,非事実文と事実文とを検出できることを示す。
    論文  参考訳(メタデータ)   (Wed, 15 Mar 2023 19:31:21 GMT)
  • ゼロリソース、ブラックボックス(LLMの応答のみ利用)で実行可能なHullucination検出方法の提案。Hullucinationが起きない、LLMが良く知っているものであれば応答も近しくなるというアイデア
  • リポジトリはGitHub – potsawee/selfcheckgpt: SelfCheckGPT: Zero-Resource Black-Box Hallucination Detection for Generative Large Language Models