コンテンツへスキップ
- Figure It Out: Improving the Frontier of Reasoning with Active Visual Thinking [53.8]
複雑な推論問題は、テキストに明示的にエンコードされていない暗黙の空間的、幾何学的、構造的関係を含むことが多い。 FIGRを導入し、エンドツーエンドの強化学習を通して、アクティブな視覚的思考を多ターン推論に統合する。
論文 参考訳(メタデータ) (Tue, 30 Dec 2025 15:39:11 GMT)
- 「Our core idea is to embed visual construction into a model’s reasoning trajectory. Concretely, for each problem input, FIGR enters a multi-turn reasoning loop in which it can interleave pure textual rea- soning and executable code to generate diagrams – much like a human drawing intermediate sketches while reasoning.」というアプローチによる推論過程での図形データの活用手法の提案。
- リポジトリはGitHub – chenmeiqii/FIGR: Official implementation of “Figure It Out: Improve the Frontier of Reasoning with Active Visual Thinking”
- Enhancing LLM Planning Capabilities through Intrinsic Self-Critique [34.8]
検証器などの外部ソースを使わずに、本質的な自己批判を通じてデータセットを計画する際の顕著な性能向上を示す。 自己批判が計画のパフォーマンスを大幅に向上させる方法について説明する。
論文 参考訳(メタデータ) (Tue, 30 Dec 2025 09:23:25 GMT)
- 「Each iteration of the self-improvement mechanism comprises two key steps: i) plan generation and ii) self-critiquing, aimed at iteratively refining LLM outputs. In step i), the LLM generates a plan (symbolized by a map) based on a prompt incorporating domain-specific knowledge and instructions (symbolized by the treasure chest). Step ii) involves a self-critique mechanism where the LLM evaluates its own performance, providing correctness assessments and justifications, again leveraging domain knowledge.」と自己批判による改善手法の提案。
- それなりに使われるテクニックであるとは思うのだが、イテレーションを含めしっかりと検証されていてとても参考になる。
- OS-Oracle: A Comprehensive Framework for Cross-Platform GUI Critic Models [54.4]
クロスプラットフォームGUI批判データのためのスケーラブルなデータパイプライン、教師付き微調整と一貫性保護グループによる相対的なポリシー最適化を組み合わせた2段階のトレーニングパラダイム、モバイル、Web、デスクトッププラットフォームにおける批判モデルのパフォーマンスを評価するための総合ベンチマークであるOS-Critic Benchの3つのコアコントリビューションを紹介します。 結果として得られた批判モデルであるOS-Oracle-7Bは、OS-Critic Bench上のオープンソースのVLMの最先端のパフォーマンスを達成し、モバイルドメインのプロプライエタリモデルを上回っている。
論文 参考訳(メタデータ) (Thu, 18 Dec 2025 08:29:50 GMT)
- 「we present OS-Oracle, a comprehensive framework for GUI critic models. By introducing a scalable cross-platform data pipeline, we systematically synthesize both positive and negative samples that capture di- verse GUI failure modes. Together with a two-stage training recipe combining supervised fine-tuning and consistency- preserving GRPO, our approach enables robust and generalizable critic learning across Mobile, Web, and Desktop environments. Extensive experiments demonstrate that our critic model not only achieves impressive performance on the OS-Critic Bench but also effectively enhances the reliability and task success of native GUI agents.」とのこと。GUI Agentが盛り上がる中重要なデータセット、モデル、ベンチマークだと思う。
- リポジトリはGitHub – numbmelon/OS-Oracle、OS-Copilot/OS-Critic-Bench · Datasets at Hugging Face