Conformal Prediction for Privacy-Preserving Machine Learning

  • Conformal Prediction for Privacy-Preserving Machine Learning [83.9]
    AESで暗号化されたMNISTデータセットの変種を用いて、暗号化されたドメインに直接適用しても、コンフォーマル予測法が有効であることを示す。 我々の研究は、安全でプライバシーに配慮した学習システムにおける原則的不確実性定量化の基礎を定めている。
    論文  参考訳(メタデータ)   (Sun, 13 Jul 2025 15:29:14 GMT)
  • 「We then assess the same model architecture under encryption. When trained on MNIST images encrypted with a fixed key and initialization vector (AES encryption; see Section 3), the model attains an average training accuracy of 39.48% and a test accuracy of 36.88%.」って本当なんだろうか…「In contrast, training the same model on the MNIST dataset with randomized encryption per sample (a unique key per image) results in a test accuracy of 9.56%, indistinguishable from random guessing.」と記載されているということはleakとかではなさそうだが。。。キーとIVが固定とはいえ、結構驚きがある。