The Semantic Scholar Open Data Platform [79.4] セマンティック・スカラー(Semantic Scholar、S2)は、学術文献の発見と理解を支援することを目的としたオープンデータプラットフォームおよびウェブサイトである。 我々は、学術的なPDFコンテンツ抽出と知識グラフの自動構築のための最先端技術を用いて、パブリックおよびプロプライエタリなデータソースを組み合わせる。 このグラフには、構造解析されたテキスト、自然言語要約、ベクトル埋め込みなどの高度な意味的特徴が含まれている。 論文参考訳(メタデータ) (Tue, 24 Jan 2023 17:13:08 GMT)
Toward General Design Principles for Generative AI Applications [16.1] 生成AIアプリケーションの設計に関する7つの原則を提示する。 生成AIの特徴として、複数の成果と不完全性、探索と制御、メンタルモデルと説明の6つの原則が重視されている。 我々は、生成モデルの有害な出力、誤用、または人的変位の可能性によって引き起こされる可能性のある潜在的な害に対して設計をするようデザイナーに促す。 論文参考訳(メタデータ) (Fri, 13 Jan 2023 14:37:56 GMT)
Large Language Models as Corporate Lobbyists [0.0] 自己回帰的な大きな言語モデルは、提案されたアメリカ合衆国議会法案が特定の公共企業に関連するかどうかを決定する。 モデルが関連するものとみなす法案について、モデルは、提案された法律を変更するよう議会に説得するために、法案のスポンサーに手紙を起草する。 論文参考訳(メタデータ) (Wed, 4 Jan 2023 16:55:35 GMT)
Explanations Can Reduce Overreliance on AI Systems During Decision-Making [12.7] AIが予測のための説明を生成する場合、予測のみを提供する場合に比べて、過信は減少しない。 過度信頼は認知バイアスや未確認の信頼の結果であり、過度信頼は人間の認知の必然性に起因すると主張する者もいる。 対照的に、私たちの論文では、AIの説明に関わるかどうかを戦略的に選択し、AIの説明が過度な信頼を減少させるシナリオがあることを実証的に示す。文献で見いだされた無効効果のいくつかは、AIの予測を検証するコストを十分に削減していない説明によるものである可能性が示唆された。 論文参考訳(メタデータ) (Tue, 13 Dec 2022 18:59:31 GMT)
Diffusion Art or Digital Forgery? Investigating Data Replication in Diffusion Models [53.0] 生成した画像とトレーニングサンプルを比較し、コンテンツが複製されたことを検知する画像検索フレームワークについて検討する。 フレームワークをCeleb-A、ImageNet、LAIONなど複数のデータセットでトレーニングされた拡散モデルに適用することにより、トレーニングセットのサイズがコンテンツ複製にどのように影響するかを議論する。 論文参考訳(メタデータ) (Thu, 8 Dec 2022 18:59:30 GMT)
論文中には「Furthermore, it is highly likely that replication exists that our retrieval method is unable to identify.」との記載もあり、生成モデルがバズった中で言われていた懸念は現実的なリスクのよう。
Human or Machine? Turing Tests for Vision and Language [22.1] 我々は、現在のAIを人間を模倣する能力で体系的にベンチマークする。 実験では、769人の人的エージェント、24人の最先端AIエージェント、896人の人的裁判官、8人のAI裁判官がテストされた。 その結果、現在のAIは、性別、年齢、教育レベルによって人間の裁判官を偽装できるわけではないことが判明した。 論文参考訳(メタデータ) (Wed, 23 Nov 2022 16:16:52 GMT)
The Lean Data Scientist: Recent Advances towards Overcoming the Data Bottleneck [16.2] 機械学習(ML)は、ほとんどすべての科学と産業に影響を及ぼし、世界を変えつつある。 最近のアルゴリズムはますますデータに飢えており、トレーニングには大規模なデータセットが必要である。 しかし、そのような規模の高品質なデータセットを取得することは難しい課題である。 論文参考訳(メタデータ) (Tue, 15 Nov 2022 07:44:56 GMT)