コンテンツへスキップ
- Measuring Agents in Production [133.8]
プロダクションエージェントは通常、シンプルで制御可能なアプローチで構築されています。 信頼性は依然として最大の開発課題であり、エージェントの正しさの確保と評価の難しさによって推進されます。
論文 参考訳(メタデータ) (Tue, 02 Dec 2025 16:45:10 GMT)
- AIエージェント利用に関する調査。現状は効率化や人間の補完を目指した利用が多い、課題は信頼性など納得感がある。「Production agents favor well-scoped, static work-flows: 68% execute at most ten steps before requiring human intervention, with 47% executing fewer than five steps. Furthermore, 85% of detailed case studies forgo third-party agent frameworks, opting instead to build custom agent ap- plication from scratch. Organizations deliberately constrain agent autonomy to maintain reliability.」も現状はそうだろうと思いつつ、徐々に変化していくんだろうなと思わなくもない。
- Social Simulations with Large Language Model Risk Utopian Illusion [61.4]
社会シミュレーションにおける大規模言語モデルの行動分析のための体系的枠組みを提案する。 本手法は,チャットルーム型会話を通してマルチエージェントインタラクションをシミュレートし,5つの言語的側面にわたって解析する。 以上の結果から,LSMは真の人間の行動を忠実に再現するのではなく,過度に理想化されたバージョンを反映していることが明らかとなった。
論文 参考訳(メタデータ) (Fri, 24 Oct 2025 06:08:41 GMT)
- 様々なところで試されているLLMを用いた社会シミュレーションに関する報告、「Our findings reveal that LLMs do not faithfully reproduce genuine human behavior but instead reflect overly idealized versions of it, shaped by the social desirabil- ity bias. In particular, LLMs show social role bias, primacy effect, and positivity bias, resulting in “Utopian” societies that lack the complexity and variability of real human interactions.」と否定的見解。
- Human-AI Interactions: Cognitive, Behavioral, and Emotional Impacts [0.0]
過度な信頼感、認知的オフロード、社会的および感情的な操作、および人間の代理店の曖昧な劣化と判断の潜在的なリスクが強調される。 観察によると、AIは記憶、創造性、エンゲージメントを大幅に向上させることができるが、批判的思考の減少、スキルの侵食、不安の増加といったリスクももたらしている。 本稿は、人間中心の新たなリスクと利益のバランスをとるための、縦断的研究と評価フレームワークのギャップを浮き彫りにして、責任とコンテキストを意識したAI設計の必要性を明らかにすることを目的としている。
論文 参考訳(メタデータ) (Mon, 20 Oct 2025 17:06:46 GMT)
- 人間とAIのかかわりに関してのサーベイ。リスク面で注意すべきかもしれない事例が多く紹介されている。
- How Do AI Agents Do Human Work? Comparing AI and Human Workflows Across Diverse Occupations [112.6]
エージェントが人間とエージェントの労働者の直接比較を初めて提示することで、エージェントがどのように人間の仕事をするかを考察する。 結果が88.3%速く、コストが90.4-96.2%低いことが判明した。
論文 参考訳(メタデータ) (Sun, 26 Oct 2025 18:10:22 GMT)
- 人間とエージェントの比較、様々な課題も指摘されているが「Compared to an average human worker, agents deliver work 88.3–96.6% faster and at 90.4–96.2% lower costs. Our induced workflows naturally suggest a division of labor: readily programmable steps can be delegated to agents for efficiency, while humans handle the steps where agents fall short.」との結果はやや驚き。
- 「One quarter of human activities we studied involve AI tools, with most used for augmentation purposes: integrating AI into existing workflows with minimal disruption, while improving efficiency by 24.3%. In contrast, AI automation markedly reshapes workflows and slows human work by 17.7%, largely due to additional time spent on verification and debugging (Figure 5).」はまぁそんなものか、という印象はあるが。。
- ツールキットが公開されている。GitHub – zorazrw/workflow-induction-toolkit: A toolkit to induce interpretable workflows from raw computer-use activities.
- Remote Labor Index: Measuring AI Automation of Remote Work [46.5]
AIは、研究指向の知識と推論のベンチマークを急速に進歩させたが、これらの成果が経済的価値と自動化にどのように変換されるかは、まだ不明である。 これを測定するために、実世界の経済的に価値のあるプロジェクトからなる広範囲にわたるマルチセクタベンチマークであるRemote Labor Index (RLI)を導入する。
論文 参考訳(メタデータ) (Thu, 30 Oct 2025 17:58:04 GMT)
- こちらは「RLI establishes an economically grounded measure of AI automation capacity, with 240 projects spanning 23 domains of digital freelance work, each anchored in demonstrated market value. Frontier AI agents perform near the floor on RLI, achieving an automation rate of less than 3%, revealing a stark gap between progress on computer use evaluations and the ability to perform real and economically valuable work.」と指摘。
- The Role of Computing Resources in Publishing Foundation Model Research [84.2]
我々はこれらの資源と基礎モデル(FM)の科学的発展との関係を評価する。 我々は2022年から2024年にかけて発行された6517のFM論文をレビューし、計算資源が科学出力に与える影響について229人の第一著者を調査した。 計算量の増加は国家予算配分や引用と相関していることがわかったが,研究環境との強い相関はみられない。
論文 参考訳(メタデータ) (Wed, 15 Oct 2025 14:50:45 GMT)
- 計算リソースと研究成果の関係に関する分析。「We found that projects with access to greater GPU power generally produce more advanced pre-trained models, often achieving higher performance thanks to longer training on larger models and datasets.」という示唆はそうだろうなーと思うしなかなか開示できない事情は理解しつつも「This is generally a serious reporting gap: only 16.51% of papers include GPU quantity information, 24.22% specify GPU types, and just 12.86% report inference times.」は問題だと思う。
- プロジェクトサイトはChasing Compute – Foundation Model Research
- Never Compromise to Vulnerabilities: A Comprehensive Survey on AI Governance [211.1]
本研究は,本質的セキュリティ,デリバティブ・セキュリティ,社会倫理の3つの柱を中心に構築された,技術的・社会的次元を統合した包括的枠組みを提案する。 我々は,(1)防衛が進化する脅威に対して失敗する一般化ギャップ,(2)現実世界のリスクを無視する不適切な評価プロトコル,(3)矛盾する監視につながる断片的な規制,の3つの課題を特定する。 私たちのフレームワークは、研究者、エンジニア、政策立案者に対して、堅牢でセキュアなだけでなく、倫理的に整合性があり、公的な信頼に値するAIシステムを開発するための実用的なガイダンスを提供します。
論文 参考訳(メタデータ) (Tue, 12 Aug 2025 09:42:56 GMT)
- 「This paper offers a comprehensive overview of AI governance, addressing challenges across intrinsic security, derivative security, and social ethics.」とガバナンスについて概要がまとまった論文。リポジトリもあって良い感じ(だが、リポジトリの論文リストは更新中?)
- リポジトリはGitHub – ZTianle/Awesome-AI-SG: Awesome papers and resources related to the AI Safety and Governance
- Frontier AI Risk Management Framework in Practice: A Risk Analysis Technical Report [51.2]
本報告では,フロンティアリスクの包括的評価について述べる。 サイバー犯罪、生物学的および化学的リスク、説得と操作、制御不能な自律型AIR&D、戦略的騙しと計画、自己複製、共謀の7つの分野における重要なリスクを特定します。
論文 参考訳(メタデータ) (Tue, 22 Jul 2025 12:44:38 GMT)
- 強力なAIに対するリスクの評価。最初に「Guided by the “AI-45◦Law,” we evaluate these risks using “red lines” (intolerable thresholds) and “yellow lines” (early warning indicators) to define risk zones: green (manageable risk for routine deployment and continuous monitoring), yellow (requiring strengthened mitigations and con- trolled deployment), and red (necessitating suspension of development and/or deployment). Experimental results show that all recent frontier AI models reside in green and yellow zones, without crossing red lines.」とあるが、セキュリティだと「However, none could accomplish more complex attacks, such as MH_K, MH_N, or full-chain exploitation. These findings indicate that while current models can execute simple cyber operations, they remain incapable of conducting sophisticated, real-world cyber attacks.」など具体的な内容になっている。
- Your AI, Not Your View: The Bias of LLMs in Investment Analysis [55.3]
金融分野では、事前訓練されたパラメトリック知識とリアルタイム市場データとの相違により、LLM(Large Language Models)は頻繁に知識紛争に直面している。 LLMに基づく投資分析において、確認バイアスの最初の定量的分析を行う。 われわれは、大口株に対する一貫した選好と、ほとんどのモデルにおけるコントラリアン戦略を観察する。
論文 参考訳(メタデータ) (Mon, 28 Jul 2025 16:09:38 GMT)
- LLMの投資に関するバイアスの定量的分析。
- 「The results show that LLMs are not neutral decision-makers, with distinct preferences for certain financial factors depending on the model. While sector preferences varied significantly across models, showing no overall trend, a common bias towards large- size stocks and a consistent preference for a contrarian investment view over momentum were observed.」というバイアスがあるというのと、「While the models correctly reversed their decisions when presented only with counter-evidence, their flexibility sharply decreased in situations where supporting and counter-evidence were mixed and conflicting.」とかなり頑固なよう。
- LLMに何かを判断させる際には細心の注意が必要。
- LLM Economist: Large Population Models and Mechanism Design in Multi-Agent Generative Simulacra [29.6]
本稿では,エージェント・ベース・モデリングを用いて経済政策を設計・評価する新しい枠組みを提案する。 下位レベルでは、有界な労働者エージェントは、テキストベースのユーティリティ関数をテキストで学習するために労働供給を選択する。 上位のレベルでは、プランナーエージェントは、現在の連邦政府の括弧に固定された一貫した境界税制を提案するために、文脈内強化学習を採用する。
論文 参考訳(メタデータ) (Mon, 21 Jul 2025 17:21:14 GMT)
- 「Our results show that a Llama-3 model can (i) recover the Mirrleesian trade-off between equity and efficiency, (ii) approach Saez-optimal schedules in heterogeneous settings where analytical formulas are unavailable, and (iii) reproduce political phenomena—such as majority exploitation and welfare-enhancing leader turnover—without any hand-crafted rules. Taken together, the experiments suggest that large language models can serve as tractable test beds for policy design long before real-world deployment, providing a bridge between modern generative AI and classical economic theory.」とのこと。LLM basedなマルチエージェントシミュレーションとして興味深い結果であるのと、(凝ったアプローチのように見えるが)Llama-3.1-8B-InstructでOKというのが若干驚き。
- リポジトリはsethkarten/LLM-Economist: Official repository of the 2025 paper, LLM Economist: Large Population Models and Mechanism Design in Multi-Agent Generative Simulacra.
- Corrupted by Reasoning: Reasoning Language Models Become Free-Riders in Public Goods Games [87.6]
大規模言語モデルは、アライメント、堅牢性、安全なデプロイメントを保証する上で、いかに自己関心と集合的幸福のバランスをとるかが重要な課題である。 我々は、行動経済学から制度的に選択した公共財ゲームに適応し、異なるLLMがいかに社会的ジレンマをナビゲートするかを観察することができる。 意外なことに、o1シリーズのようなLRMの推論は、協調にかなり苦労している。
論文 参考訳(メタデータ) (Sun, 29 Jun 2025 15:02:47 GMT)
- 「our findings reveal a surprising pattern: while traditional LLMs demonstrate robust cooperation comparable to human outcomes, reasoning- enhanced models frequently struggle to sustain cooperation.」という興味深い結果。reasoningモデルだからなのか、モデルサイズや学習結果の問題なのかとても興味があるところ。
- リポジトリはGitHub – davidguzmanp/SanctSim
- How large language models judge and influence human cooperation [82.1]
我々は、最先端の言語モデルが協調行動をどのように判断するかを評価する。 我々は、善良な相手との協力を評価する際、顕著な合意を守ります。 モデル間の差異が協調の頻度に大きく影響を及ぼすことを示す。
論文 参考訳(メタデータ) (Mon, 30 Jun 2025 09:14:42 GMT)
- LLMが協調的な行動をとるか検証した論文。傾向を分析するのが難しい結果ではあるが「With some exceptions, most LLM families we tested tend to move from IS towards SS as versions and parameter size increases, indicating a shift towards a higher complexity social norm which makes use of more context, specifically assigned reputations. Moreover, different versions of the same family can have vastly distinct social norms, such as Claude 3.5 Haiku [47] and Claude 3.7 Sonnet [48], despite their similar ethical goals [49].」とのこと。(IS, cooperating is good, defection is bad、SS, cooperating is always good, defecting against bad individuals is also good)
- 「These results highlight an important concern: LLMs are not explicitly designed with a given social norm in mind, instead emerging as a by-product of their training [4]. While these norms may occasionally align with those of humans, they are neither designed to maintain cooperation and minimize disagreement, nor are they co-created with communities from diverse cultures to reflect their norms and needs [3].」というのが実際のところだと思うが、意思決定支援に使うという話は相応にあったりするわけで注意が必要だと思う。