TopicGPT

  • TopicGPT: A Prompt-based Topic Modeling Framework [83.4]
    TopicGPTは,大規模言語モデルを用いて潜在トピックを明らかにするプロンプトベースのフレームワークである。 競合する手法と比較して、人間の分類とよく一致したトピックを生成する。 そのトピックはより解釈可能で、自然言語ラベルと関連する自由形式の記述を含むトピックを好んで、曖昧な言葉の袋を除いた。
    論文  参考訳(メタデータ)   (Thu, 2 Nov 2023 17:57:10 GMT)
  • Topic GenerationとTopic Assignmentから成るLLM版トピックモデル。解釈可能性、適応可能性に優れるとのこと。クラスタリングへの応用事例でも近しい結論になっていたはずで結果は妥当そう。
  • リポジトリはGitHub – chtmp223/topicGPT: Code & Prompts for TopicGPT paper (Pham et al. 2023)

TopClus: PLMを用いたトピッククラスタリング

TaxoCom: トピック分類

  • TaxoCom: Topic Taxonomy Completion with Hierarchical Discovery of Novel Topic Clusters [57.6]
    我々はTaxoComというトピック分類の完成のための新しい枠組みを提案する。 TaxoComは、用語と文書の新たなサブトピッククラスタを発見する。 (i)局所的判別的埋め込みは、既知の(すなわち与えられた)サブトピック間で識別可能なテキスト埋め込み空間を最適化し、 (ii)新規適応クラスタリングは、既知のサブトピックまたは新しいサブトピックのいずれかに用語を割り当てる。 2つの実世界のデータセットに関する総合的な実験により、TaxoComは、用語の一貫性とトピックカバレッジの観点から高品質なトピック分類を生成するだけでなく、下流タスクにおける他のすべてのベースラインよりも優れています。
    論文  参考訳(メタデータ)  参考訳(全文)  (Wed, 19 Jan 2022 20:02:10 GMT)
    • ユーザから与えられたトピック情報を不完全と仮定し、新規のトピックを見つける事が可能なTopic Taxonomy手法の提案。人間の評価により優れた出力であることを確認したとのこと。