Beyond Chunks and Graphs: Retrieval-Augmented Generation through Triplet-Driven Thinking 

  • Beyond Chunks and Graphs: Retrieval-Augmented Generation through Triplet-Driven Thinking [31.7]
    Retrieval-augmented Generation(RAG)は、幻覚を減らし、外部知識をLarge Language Models(LLM)に組み込むために重要である。 T$2$RAGは、原子三重項の単純でグラフのない知識ベースで動作する新しいフレームワークである。 実験結果から,T$2$RAGは最先端のマルチラウンド法とグラフRAG法を著しく上回ることがわかった。
    論文  参考訳(メタデータ)   (Mon, 04 Aug 2025 13:50:44 GMT)
  • 「We introduce a novel RAG framework that leverages triplets as the fundamental unit for indexing, retrieval, and reasoning, moving beyond the limitations of chunk-based and explicit graph-based approaches」とトリプレットベースのRAGアプローチの提案。グラフ構造を上回るのはやや意外だが、コンポーネントとしては「both the iterative process and the use of chunks are important. The iterative reasoning module proves to be a critical component.」ということでシンプルな構成であることも有利だったりするのだろうか。
  • リポジトリはrockcor/T2RAG: Official code of paper “Beyond Chunks and Graphs: Retrieval-Augmented Generation through Triplet-Driven Thinking”

コメントを残す

メールアドレスが公開されることはありません。 が付いている欄は必須項目です