データセット(要約、マルチリンガルベンチマーク)、シミュレーションtoリアル

  • XTREME-R: Towards More Challenging and Nuanced Multilingual Evaluation [93.8]
    本稿では,言語間移動学習の現状を解析する。 XTREMEを10種類の自然言語理解タスクからなるXTREME-Rに拡張する。
    論文  参考訳(メタデータ)   (Thu, 15 Apr 2021 12:26:12 GMT)
    • マルチリンガルなベンチマークXTREMEの拡張版。現在、XTREMEの上位は中国の企業が多い。日本の企業にも頑張ってほしいところ。
  • MS2: Multi-Document Summarization of Medical Studies [11.4]
    MS2(Multi-Document Summarization of Medical Studies)は、科学文献から得られた470k以上の文書と20kの要約からなるデータセットです。 このデータセットは、矛盾する証拠を複数の研究で評価し集約するシステムの開発を促進する。 早期成果を期待して,BARTに基づく要約システムを実験した。
    論文  参考訳(メタデータ)  参考訳(全文)  (Thu, 15 Apr 2021 16:09:21 GMT)
  • Auto-Tuned Sim-to-Real Transfer [143.4]
    シミュレーションで訓練されたポリシーは、しばしば現実世界に移されるときに失敗する。 ドメインのランダム化のようなこの問題に取り組む現在のアプローチには、事前の知識とエンジニアリングが必要である。 実世界に合わせてシミュレータシステムパラメータを自動的にチューニングする手法を提案する。
    論文  参考訳(メタデータ)   (Thu, 15 Apr 2021 17:59:55 GMT)
    • シミュレーションと現実をつなぐ研究。強化学習でよく用いられるシミュレーション環境での学習結果を現実環境に適用するための良いアプローチを提案。
    • Training-serving skewも自動検知、自動修正できるようになったりしないのかなと思う最近。ドメインシフト検知等の研究は多いのでどうにかなる時代が来るかもと期待。