手書き文字の生成、データ拡張

  • Handwriting Transformers [98.4]
    本稿では, トランスフォーマーを用いた手書きテキスト画像生成手法であるHWTを提案する。HWTは,自己アテンション機構を用いて,スタイル例内の長短範囲関係をキャプチャし,グローバルなスタイルパターンとローカルなスタイルパターンの両方を符号化する。提案したHWTは, 自己認識機構を用いて, スタイルの例における長短距離関係をキャプチャする。 提案するHWTは,現実的な手書きテキスト画像を生成する。
    論文  参考訳(メタデータ)  参考訳(全文)  (Thu, 8 Apr 2021 17:59:43 GMT)
    • Transformerを用いた手書きテキストの生成。直感的にはシーケンス的な情報も重要なのでこの構造は有効なのだと思う。PDFにあるサンプルが興味深い。
  • InAugment: Improving Classifiers via Internal Augmentation [14.3]
    本稿では,画像内部統計を利用した新しい拡張操作であるinaugmentを提案する。 キーとなるアイデアは、イメージ自体からパッチをコピーし、拡張操作を適用し、それらを同じイメージ上のランダムな位置にペーストすることだ。imagenetデータセットにおけるresnet50 と efficientnet-b3 top-1 の精度を,事前拡張法と比較して向上させた。 最後に,InAugmentを用いた畳み込みニューラルネットワークのトレーニングにより,モデルの精度と信頼性が向上するだけでなく,分布外画像の性能が向上することが示唆された。
    論文  参考訳(メタデータ)   (Thu, 8 Apr 2021 15:37:21 GMT)
    • データ拡張の話。この手のData augumentationは精度向上テクニックとして有効なこともあるという印象だが、論文中の様々な手法との比較が参考になる。コードはgithubに公開予定とのこと。