- OpenICL: An Open-Source Framework for In-context Learning [48.8]
In-context Learning (ICL) と大規模言語モデル評価のためのオープンソースツールキット OpenICL を紹介する。 OpenICLは、ユーザが自分のニーズに合ったさまざまなコンポーネントを簡単に組み合わせられるように、非常に柔軟なアーキテクチャで研究に親しみやすい。 OpenICLの有効性は、分類、QA、機械翻訳、意味解析を含む幅広いNLPタスクで検証されている。
論文 参考訳(メタデータ) (Mon, 6 Mar 2023 06:20:25 GMT) - OSS(Apache-2)のIn-context Learningフレームワーク
- 様々なRetriever(コンテキスト内のサンプル取得)とInferencer(LMとのやり取りや最終的な回答、chain-of-thoughtやselection-inferenceにも対応)を選ぶことができる
- リポジトリはGitHub – Shark-NLP/OpenICL: OpenICL is an open-source framework to facilitate research, development, and prototyping of in-context learning.
日: 2023年3月15日
Zero-shot Object Counting
- Zero-shot Object Counting [31.2]
クラスに依存しないオブジェクトカウントは、テスト時に任意のクラスのオブジェクトインスタンスをカウントすることを目的としている。 現在の手法では、新しいカテゴリではしばしば利用できない入力として、人間に注釈をつけた模範を必要とする。 テスト期間中にクラス名のみを利用できる新しい設定であるゼロショットオブジェクトカウント(ZSC)を提案する。
論文 参考訳(メタデータ) (Fri, 3 Mar 2023 15:14:36 GMT) - ゼロショットでのオブジェクトカウンティング。カウンタがクラス名のみを使うことをもってゼロショットとしている。Generaterを用いるアプローチ。
- プロジェクトサイトはGitHub – cvlab-stonybrook/zero-shot-counting: CVPR2023 Zero-shot Counting (現在はComing soon)