CORR2CAUSE

  • Can Large Language Models Infer Causation from Correlation? [49.2]
    大規模言語モデル(LLM)の純粋因果推論スキルをテストする。 相関文の集合を取り、変数間の因果関係を決定する新しいタスクCorr2Causeを定式化する。 これらのモデルがタスクのランダムな性能にほぼ近い結果が得られることを示す。
    論文  参考訳(メタデータ)   (Fri, 9 Jun 2023 12:09:15 GMT)
  • 相関から因果関係を決定するタスクの提案、LLMにとって非常に難しいタスクでありGPT-4でもかなり低スコア。finetuneするとスコアが大幅に向上するが堅牢さは十分でない点も興味深い。
  • リポジトリはGitHub – causalNLP/corr2cause: Data and code for the CausalNLI dataset paper

MobileNMT

  • MobileNMT: Enabling Translation in 15MB and 30ms [53.8]
    デバイス上で15MBと30msで翻訳できるMobileNMTを提案する。 モデルとエンジンの共設計により、既存のシステムと比較して47.0xのスピードを上げ、メモリの99.5%を節約し、BLEUの損失は11.6%に留まった。
    論文  参考訳(メタデータ)   (Wed, 7 Jun 2023 08:25:51 GMT)
  • 小規模で高速なニューラル機械翻訳モデルの提案
  • リポジトリはGitHub – zjersey/Lightseq-ARM