- h2oGPT: Democratizing Large Language Models [1.8]
h2oGPTは、ジェネレーティブ事前学習トランスフォーマー(GPT)に基づいたLarge Language Models(LLM)の作成と使用のためのオープンソースのコードリポジトリのスイートである。 このプロジェクトの目的は、クローズドソースのGPTに対して、世界で最高のオープンソース代替品を作ることです。
論文 参考訳(メタデータ) (Tue, 13 Jun 2023 22:19:53 GMT) - GPT(チャットボットとドキュメント検索がユースケース)構築のためのフレームワークの提案。AutoMLツールとして有名なh2oによるオープンな実装で、主要なOSS基盤モデルをチューニングした結果もダウンロード可能。性能評価がモデルカードに含まれているのがありがたいのとLangChainなどとの連携も可能そう。
- リポジトリはGitHub – h2oai/h2ogpt: Join us at H2O.ai to make the world’s best open-source GPT with document and image Q&A, 100% private chat, no data leaks, Apache 2.0 https://arxiv.org/pdf/2306.08161.pdf
日: 2023年6月22日
MIMIC-IT
- MIMIC-IT: Multi-Modal In-Context Instruction Tuning [44.9]
本稿では,280万のマルチモーダル・インストラクション・レスポンス・ペアからなるデータセットについて述べる。 MIMIC-ITデータセットを用いて、Otterはマルチモーダル認識、推論、文脈内学習において顕著な習熟度を示した。 我々はMIMIC-ITデータセット、命令応答型コレクションパイプライン、ベンチマーク、オッターモデルをリリースする。
論文 参考訳(メタデータ) (Thu, 8 Jun 2023 17:59:56 GMT) - 大規模なマルチモーダル(画像または動画)のinstruction-response データセット、日本語も含まれているとのこと
- リポジトリはGitHub – Luodian/Otter: 🦦 Otter, a multi-modal model based on OpenFlamingo (open-sourced version of DeepMind’s Flamingo), trained on MIMIC-IT and showcasing improved instruction-following and in-context learning ability.
AlgoPerf: Training Algorithms benchmark / Benchmarking Neural Network Training Algorithms
- Benchmarking Neural Network Training Algorithms [46.4]
トレーニングアルゴリズムは、ディープラーニングパイプラインに不可欠な部分です。 コミュニティとして、トレーニングアルゴリズムの改善を確実に特定することはできない。 固定ハードウェア上で実行される複数のワークロードを使用した,新たな,競争力のある,時間と時間のベンチマークを導入する。
論文 参考訳(メタデータ) (Mon, 12 Jun 2023 15:21:02 GMT) - トレーニングアルゴリズムの改善を測るためのベンチマークの提案。多くの研究者が慎重に検討しており論文も長く詳細。勉強になる。