コンテンツへスキップ
- Benchmark Evaluations, Applications, and Challenges of Large Vision Language Models: A Survey [6.7]
VLM(Multimodal Vision Language Models)は、コンピュータビジョンと自然言語処理の交差点において、トランスフォーメーション技術として登場した。 VLMは、視覚的およびテキスト的データに対して強力な推論と理解能力を示し、ゼロショット分類において古典的な単一モダリティ視覚モデルを上回る。
論文 参考訳(メタデータ) (Sat, 04 Jan 2025 04:59:33 GMT)
- 「we provide a systematic overview of VLMs in the following aspects: [1] model information of the major VLMs developed over the past five years (2019-2024); [2] the main architectures and training methods of these VLMs; [3] summary and categorization of the popular benchmarks and evaluation metrics of VLMs; [4] the applications of VLMs including embodied agents, robotics, and video generation; [5] the challenges and issues faced by current VLMs such as hallucination, fairness, and safety.」とVLMのサーベイ。
- リポジトリはGitHub – zli12321/VLM-surveys: A most Frontend Collection and survey of vision-language model papers, and models GitHub repository
- Open Problems in Machine Unlearning for AI Safety [61.4]
特定の種類の知識を選択的に忘れたり、抑圧したりするマシンアンラーニングは、プライバシとデータ削除タスクの約束を示している。 本稿では,アンラーニングがAI安全性の包括的ソリューションとして機能することを防止するための重要な制約を特定する。
論文 参考訳(メタデータ) (Thu, 09 Jan 2025 03:59:10 GMT)
- 重要技術ではあるが実用化に至っていない雰囲気のあるMachine unlearningに関するサーベイ。主に課題面にフォーカスしている。
- 結論の「Current approaches to neural-level interventions often produce unintended effects on broader model capabilities, adding practical challenges to selective capability control, while the difficulty of verifying unlearning success and robustness against relearning raises additional concerns. Furthermore, unlearning interventions can create tensions with existing safety mechanisms, potentially affecting their reliability.」は現状を端的に表している。。。
- Towards Best Practices for Open Datasets for LLM Training [21.4]
多くのAI企業は、著作権所有者の許可なく、データ上で大きな言語モデル(LLM)をトレーニングしています。 創造的なプロデューサーは、いくつかの著名な著作権訴訟を引き起こした。 データ情報を制限するこの傾向は、透明性、説明責任、革新を妨げることによって害をもたらす。
論文 参考訳(メタデータ) (Tue, 14 Jan 2025 17:18:05 GMT)
- 学習等に使用するデータセットを選ぶベストプラクティスの整理、「The permissibility of doing so varies by jurisdiction: in countries like the EU and Japan, this is allowed under certain restrictions, while in the United States, the legal landscape is more ambiguous.」とはあるが日本でもとても大事な内容。