コンテンツへスキップ
- Cosmos World Foundation Model Platform for Physical AI [136.1]
物理AIには、自分自身のデジタルツイン、ポリシーモデル、そして世界のデジタルツイン、ワールドモデルが必要です。 私たちは、開発者が物理AIセットアップのためにカスタマイズされた世界モデルを構築するのを助けるために、Cosmos World Foundation Model Platformを紹介します。
論文 参考訳(メタデータ) (Tue, 07 Jan 2025 06:55:50 GMT)
- バズっていたNVIDIAによるWorld Foundation Model。「Our platform covers a video curation pipeline, pre-trained world foundation models, examples of post-training of pre-trained world foundation models, and video tokenizers.」と包括的な構成でモデルを公開しているのはすごい。
- 構築過程で「We refine our data by excluding specific video types that could lead to poor generation quality or unrealistic dynamics, such as abstract visual patterns, video game footage, animated content, etc.」があるのが面白かった。unrealistic dynamicsはそうだろうと思う。
- 現状は初期段階、問題も多そうではあるが今後の発展に期待。現状の進化で作れるのか、根幹のモデルアーキテクチャが変わらないとできないのか、とても興味がある。
- リポジトリはGitHub – NVIDIA/Cosmos: Cosmos is a world model development platform that consists of world foundation models, tokenizers and video processing pipeline to accelerate the development of Physical AI at Robotics & AV labs. Cosmos is purpose built for physical AI. The Cosmos repository will enable end users to run the Cosmos models, run inference scripts and generate videos.
- Think More, Hallucinate Less: Mitigating Hallucinations via Dual Process of Fast and Slow Thinking [124.7]
HaluSearchは、ツリー検索ベースのアルゴリズムを組み込んだ新しいフレームワークである。 テキスト生成をステップバイステップの推論プロセスとしてフレーム化する。 認知科学における二重プロセス理論に着想を得た階層的思考システムスイッチ機構を導入する。
論文 参考訳(メタデータ) (Thu, 02 Jan 2025 15:36:50 GMT)
- 「We propose HaluSearch, which integrates tree search-based algorithms (e g , MCTS) to explicitly implement a slow thinking process during the inference stage of LLMs, fully exploiting their own internal knowledge to mitigate hallucinations in generated text.」、各ステップの報酬を評価するスタイル。「To facilitate self-evaluation, we trained the reward model using data synthesized by the HaluSearch framework to assess the degree of hallucinations and provide reward signals.」とのこと。「Additionally, to improve efficiency, we introduced a dynamic system switch mechanism, which utilizes a trained switch model to enable LLMs to adaptively alternate between fast and slow thinking modes at both the instance and step levels.」という機構を有することが特徴的で、overthinking対策としても有望そうな感じがする。
- 現時点での全部入り的なアプローチで面白い。
- Search-o1: Agentic Search-Enhanced Large Reasoning Models [24.2]
OpenAI-o1のような大きな推論モデル(LRM)は、大規模な強化学習を通じて、大きなステップワイズ推論能力を実証している。 エージェント検索拡張生成(RAG)機構とReason-in-Documentsモジュールを併用し,LRMを強化するフレームワークである textbfSearch-o1 を紹介する。
論文 参考訳(メタデータ) (Thu, 09 Jan 2025 16:48:17 GMT)
- RAG + Large Rrasoning Modelなフレームワークの提案。Agenticなアプローチに見えなくもないが、「(a) Direct reasoning without retrieval often results in inaccuracies due to missing knowledge. (b) Our agentic retrieval-augmented reasoning approach improves knowledge access but usually returns lengthy, redundant documents, disrupting coherent reasoning. (c) Our Search-o1 integrates concise and accurate retrieved knowledge seamlessly into the reasoning process, enabling precise and coherent problem-solving.」とReason-in-Documentsを用いLRMと別の処理として推論の流れに沿った情報を選択・要約してLRMに組み込む有効性を主張している。
- リポジトリはSearch-o1: Agentic Search-Enhanced Large Reasoning Models