PPTAgent: Generating and Evaluating Presentations Beyond Text-to-Slides

  • PPTAgent: Generating and Evaluating Presentations Beyond Text-to-Slides [53.2]
    プレゼンテーションを自動生成する2段階の編集手法を提案する。 PPTAgentはまずプレゼンテーションを分析して,その構造パターンやコンテントスキーマを理解します。 実験の結果,PPTAgentは従来の3次元のプレゼンテーション生成方法よりも大幅に優れていた。
    論文  参考訳(メタデータ)   (Tue, 07 Jan 2025 16:53:01 GMT)
  • プレゼンテーションの自動作成。PPTとPDFを入力、ステージ1でリファレンスとなるPPTを解析、ステージ2でアウトライン生成→スライド生成を行う2段階のアプローチ。「To address the limitations of existing automated metrics for presentation evaluation, we introduce PPT Eval, a comprehensive framework for assessing presentation quality from multiple perspectives.」と評価機構も構築(内部的にはGPT-4oを利用)
  • リポジトリはGitHub – icip-cas/PPTAgent

Cosmos World Foundation Model Platform for Physical AI 

Think More, Hallucinate Less: Mitigating Hallucinations via Dual Process of Fast and Slow Thinking

  • Think More, Hallucinate Less: Mitigating Hallucinations via Dual Process of Fast and Slow Thinking [124.7]
    HaluSearchは、ツリー検索ベースのアルゴリズムを組み込んだ新しいフレームワークである。 テキスト生成をステップバイステップの推論プロセスとしてフレーム化する。 認知科学における二重プロセス理論に着想を得た階層的思考システムスイッチ機構を導入する。
    論文  参考訳(メタデータ)   (Thu, 02 Jan 2025 15:36:50 GMT)
  • 「We propose HaluSearch, which integrates tree search-based algorithms (e g , MCTS) to explicitly implement a slow thinking process during the inference stage of LLMs, fully exploiting their own internal knowledge to mitigate hallucinations in generated text.」、各ステップの報酬を評価するスタイル。「To facilitate self-evaluation, we trained the reward model using data synthesized by the HaluSearch framework to assess the degree of hallucinations and provide reward signals.」とのこと。「Additionally, to improve efficiency, we introduced a dynamic system switch mechanism, which utilizes a trained switch model to enable LLMs to adaptively alternate between fast and slow thinking modes at both the instance and step levels.」という機構を有することが特徴的で、overthinking対策としても有望そうな感じがする。
  • 現時点での全部入り的なアプローチで面白い。

Search-o1: Agentic Search-Enhanced Large Reasoning Models

  • Search-o1: Agentic Search-Enhanced Large Reasoning Models [24.2]
    OpenAI-o1のような大きな推論モデル(LRM)は、大規模な強化学習を通じて、大きなステップワイズ推論能力を実証している。 エージェント検索拡張生成(RAG)機構とReason-in-Documentsモジュールを併用し,LRMを強化するフレームワークである textbfSearch-o1 を紹介する。
    論文  参考訳(メタデータ)   (Thu, 09 Jan 2025 16:48:17 GMT)
  • RAG + Large Rrasoning Modelなフレームワークの提案。Agenticなアプローチに見えなくもないが、「(a) Direct reasoning without retrieval often results in inaccuracies due to missing knowledge. (b) Our agentic retrieval-augmented reasoning approach improves knowledge access but usually returns lengthy, redundant documents, disrupting coherent reasoning. (c) Our Search-o1 integrates concise and accurate retrieved knowledge seamlessly into the reasoning process, enabling precise and coherent problem-solving.」とReason-in-Documentsを用いLRMと別の処理として推論の流れに沿った情報を選択・要約してLRMに組み込む有効性を主張している。
  • リポジトリはSearch-o1: Agentic Search-Enhanced Large Reasoning Models