Pitfalls in Evaluating Language Model Forecasters

  • Pitfalls in Evaluating Language Model Forecasters [45.4]
    我々はコミュニティとして、大きな言語モデルを評価するような結論に注意する必要があると論じている。 1) 時間的リークによる評価結果の信頼の難しさ,(2) 評価性能から実世界の予測への外挿の難しさ,の2つのカテゴリを識別する。
    論文  参考訳(メタデータ)   (Sat, 31 May 2025 21:49:17 GMT)
  • LLMの評価に関する落とし穴をまとめた論文
  • 「We identify two broad categories of issues: (1) difficulty in trusting evaluation results due to many forms of temporal leakage, and (2) difficulty in extrapolating from evaluation performance to real-world forecasting. Through systematic analysis and concrete examples from prior work, we demonstrate how evaluation flaws can raise concerns about current and future performance claims.」というまとめだが、評価は本当に難しい。

Unifying Multimodal Large Language Model Capabilities and Modalities via Model Merging