コンテンツへスキップ
- NLP for Social Good: A Survey of Challenges, Opportunities, and Responsible Deployment [90.1]
自然言語処理の分野は、より意図と責任を持ったデプロイメントへのアプローチの必要性が高まっている、と私たちは考えています。 本稿では,NLPが社会的課題に対処する上で果たす役割について考察する。
論文 参考訳(メタデータ) (Wed, 28 May 2025 13:14:44 GMT)
- 「We draw on insights from the United Nations Sustainable De- velopment Goals1 (UN SDGs) and the 2025 Global Economic Risks Report2 (GR) to provide a foun- dation for an interdisciplinary recontextualization of NLP, encouraging reflection on how language technologies intersect with today’s most pressing challenges.」
- LAM SIMULATOR: Advancing Data Generation for Large Action Model Training via Online Exploration and Trajectory Feedback [121.8]
AIエージェントのための大規模アクションモデル(LAM)は、素晴らしいポテンシャルを提供するが、高品質なトレーニングデータを必要とするため、課題に直面している。 LAM SIMULATORは,高品質なフィードバックによるエージェントタスクのオンライン探索を目的とした総合的なフレームワークである。 本フレームワークは,動的タスククエリジェネレータ,広範囲なツールコレクション,および大規模言語モデル(LLM)エージェントがツールを呼び出し,リアルタイムフィードバックを受信できる対話型環境を備えている。
論文 参考訳(メタデータ) (Mon, 02 Jun 2025 22:36:02 GMT)
- LAM SIMULATOR, a comprehensive frame- work designed for online exploration of agentic tasks with high-quality feedback
- SridBench: Benchmark of Scientific Research Illustration Drawing of Image Generation Model [21.8]
SridBenchは、科学フィギュア生成のための最初のベンチマークである。 これは13の自然科学とコンピュータ科学の分野にわたる主要な科学論文から1,120の事例で構成されている。 その結果、GPT-4o画像のような最上位モデルでさえ、人間のパフォーマンスに遅れがあることが判明した。
論文 参考訳(メタデータ) (Wed, 28 May 2025 08:51:01 GMT)
- 科学的な図の生成に関するベンチマーク作成とその検証。データは公開されていない?
- 「We found that, with the exception of GPT-4o-image, other image generation models, such as Gemini- 2.0-Flash, do not have any scientific mapping capabilities.」とのこと。。