コンテンツへスキップ
- Benchmarking Large Language Models As AI Research Agents [105.7]
我々は,AI研究エージェントをベンチマークするMLタスクスイートであるMLAgentBenchを提案する。 我々は, GPT-4をベースとした研究エージェントが, MLAgentBenchの多くのタスクにおいて, 魅力的なMLモデルを構築できることを発見した。 長期計画や幻覚など,LLMをベースとした研究エージェントにとって重要な課題をいくつか挙げる。
論文 参考訳(メタデータ) (Thu, 5 Oct 2023 04:06:12 GMT)
- データ処理、アーキテクチャ選択、トレーニングプロセスなど、機械学習パイプライン全体を対象とするエージェント用ベンチマーク。タスクは良く研究されているものKaggleにあるもの最近のタスクなど様々。結果もGPT-4は優れているもののタスク間の差異が大きいように見える。
- リポジトリはGitHub – snap-stanford/MLAgentBench
- MindAgent: Emergent Gaming Interaction [103.7]
大規模言語モデル(LLM)は、マルチエージェントシステムで複雑なスケジューリングを行う能力を持つ。 我々はMindAgentを提案し,ゲームインタラクションにおける創発的能力の評価・調整を行う。
論文 参考訳(メタデータ) (Mon, 18 Sep 2023 17:52:22 GMT)
- CUISINEWORLDという仮想環境をベースとしたマルチエージェント化での計画や人間を含むコラボレーションを対象としたベンチマークの提案。GPT-4の優秀さが際立つ。
- プロジェクトサイトはMindAgent
- Multimodal Foundation Models: From Specialists to General-Purpose Assistants [187.7]
専門モデルから汎用アシスタントへの移行に焦点をあて,視覚と視覚言語能力を示すマルチモーダル基礎モデルの分類と進化に関する包括的調査を行う。 対象読者は、コンピュータビジョンの研究者、大学院生、およびビジョン言語によるマルチモーダルコミュニティの専門家である。
論文 参考訳(メタデータ) (Mon, 18 Sep 2023 17:56:28 GMT)
- 特化型モデル → 汎用アシスタントという最近の潮流に関するサーベイ。100ページ近くの分量であり教科書に近い
- 研究の進展が非常に速い分野でもありとても重要な論文
- Cognitive Architectures for Language Agents [47.0]
本研究では,言語エージェントのための認知的アーキテクチャ (CoALA) を提案し,推論,基礎化,学習,意思決定の多様な手法を体系化する。
論文 参考訳(メタデータ) (Tue, 5 Sep 2023 17:56:20 GMT)
- 言語エージェントの観点からLLMに関する様々なテクニック・研究を整理しフレームワーク化した論文
- 「Zero-shot, Few-shot, Zero-shot Chain-of-Thought, Retrieval Augmented Generation, Socratic Models, Self-Critique」のようなテクニックの整理や「SayCan, ReAct, Voyager, Generative Agents, Tree of Thoughts」との比較などLLM周りの様々な取り組みを整理するうえでも参考になる。
- リポジトリはGitHub – ysymyth/awesome-language-agents: List of language agents based on paper “Cognitive Architectures for Language Agents”
- A Survey on Large Language Model based Autonomous Agents [107.8]
大規模言語モデル(LLM)は、人間レベルの知性を達成する上で、顕著な可能性を示している。 本稿では,自律エージェントの分野を包括的観点から体系的に検討する。 社会科学,自然科学,工学の分野におけるLLMベースのAIエージェントの様々な応用について概説する。
論文 参考訳(メタデータ) (Tue, 22 Aug 2023 13:30:37 GMT)
- LLMを用いたAIエージェントに関するサーベイ。フレームワークとしてprofiling module, memory module, planning module, action moduleでの構成が想定されている。LLM活用が流行ってからエージェントへの応用、さらにそれらのサーベイが出るというスピード感がとても早い。。。
- 関連するリポジトリが用意されている。https://github.com/Paitesanshi/LLM-Agent-Survey