コンテンツへスキップ
- MASim: Multilingual Agent-Based Simulation for Social Science [68.0]
マルチエージェントロールプレイングは近年,言語エージェントを用いた社会行動研究の公約を示している。 既存のシミュレーションは主に単言語であり、言語間相互作用をモデル化することができない。 我々は、最初の多言語エージェントベースのシミュレーションフレームワークであるMASimを紹介する。
論文 参考訳(メタデータ) (Mon, 08 Dec 2025 06:12:48 GMT)
- 「In this work, we explore multilingual agent-based simulation for social science discovery. We begin with the MAPS dataset, which integrates open- domain survey questionnaires with user demo- graphics from global social science surveys. On top of this resource, we develop the MASIM frame- work, which models social-network interactions among cross-country user agents and news agents, and outputs user attitude dynamics for survey questions. Our evaluation examines real-world cali- bration, global sensitivity, and local consistency, which collectively support the framework’s robust- ness and effectiveness.」とマルチリンガル性に特徴を持つマルチエージェントシミュレーションフレームワークの提案。多言語性は文化に関わる部分など重要なポイントのように思う。
- Remember Me, Refine Me: A Dynamic Procedural Memory Framework for Experience-Driven Agent Evolution [52.8]
我々は静的ストレージと動的推論のギャップを埋めるため、$textbfReMe$ ($textitRemember Me, Refine Me$)を提案する。 ReMeは3つのメカニズムを通じてメモリライフサイクルを革新する: $textitmulti-faceted distillation$, きめ細かい経験を抽出する。 BFCL-V3とAppWorldの実験では、ReMeが新しい最先端のエージェントメモリシステムを確立している。
論文 参考訳(メタデータ) (Thu, 11 Dec 2025 14:40:01 GMT)
- 「The ReMe framework comprises three alternating phases. The system first constructs the initial experience pool from the agent’s past trajectories. For new tasks, relevant experiences are recalled and reorganized to guide agent inference. After task execution, ReMe updates the pool, selectively adding new insights and removing outdated ones.」というMemoryフレームワーク
- リポジトリはGitHub – agentscope-ai/ReMe: ReMe: Memory Management Kit for Agents – Remember Me, Refine Me.
- An Empirical Study of Agent Developer Practices in AI Agent Frameworks [59.9]
大規模言語モデル(LLM)の台頭はエージェントへの関心の高まりを引き起こし、エージェントフレームワークの急速な成長につながった。 エージェントフレームワークが広く使われているにもかかわらず、それらの実践的応用とエージェント開発プロセスにどのように影響するかは未解明のままである。 開発者の80%以上が、特定の開発要件に最も適合するフレームワークを特定するのに苦労していると報告している。
論文 参考訳(メタデータ) (Mon, 01 Dec 2025 17:52:15 GMT)
- エージェントフレームワークのサーベイ。
- 「Specifically, we find that (i) Langchain and CrewAI lower the technical threshold for beginners. (ii) AutoGen and LangChain excel at rapid prototyping. (iii) In terms of functional encapsulation, AutoGen and LangChain are leading in task decomposition and multi-agent collaboration. (iv) Performance optimization is a common shortcoming across all frameworks. (v) Despite their mature ecosystems, AutoGen and LangChain face the highest maintenance complexity.」とのこと。
- メンテナンスについては「6.2.5 Maintainability.」でほとんどのフレームワークが酷評されている・・・
- Comparing AI Agents to Cybersecurity Professionals in Real-World Penetration Testing [83.5]
我々は、人間のサイバーセキュリティ専門家に対するAIエージェントの包括的な評価を初めて提示する。 我々は、既存の6人のAIエージェントと、新しいエージェントの足場であるARTEMISとともに、10人のサイバーセキュリティ専門家を評価します。 ARTEMISは総合的に第2位で、9つの有効な脆弱性と82%の有効な提出率を発見した。
論文 参考訳(メタデータ) (Wed, 10 Dec 2025 18:12:29 GMT)
- 「We present the first comprehensive evaluation of AI agents against human cybersecurity professionals in a live enterprise environment. We evaluate ten cybersecurity professionals alongside six existing AI agents and ARTEMIS, our new agent scaffold, on a large university network consisting of ∼8,000 hosts across 12 subnets. ARTEMIS is a multi-agent framework featuring dynamic prompt generation, arbitrary sub-agents, and automatic vulnerability triaging. In our comparative study, ARTEMIS placed second overall, discovering 9 valid vulnerabilities with an 82% valid submission rate and outperforming 9 of 10 human participants.」とAIエージェント vs 人間の比較。このような分析は今後も様々な分野で実施されていくのだと思いつつ、どのように役割分担していくのか(将来的に人間に残される要素はあるのか)など気になるところ。
- リポジトリはGitHub – Stanford-Trinity/ARTEMIS、プロジェクトサイトはTrinity – Stanford Research
- Towards a Science of Scaling Agent Systems [79.6]
エージェント、言語モデル(LM)ベースのシステムでは、推論、計画、行動が現実のAIアプリケーションの主要なパラダイムになりつつある。 この広く採用されているにもかかわらず、彼らのパフォーマンスを決定する原則は未定のままである。 エージェントシステムのスケーリング原理を導出することで、このギャップに対処する。
論文 参考訳(メタデータ) (Tue, 09 Dec 2025 06:52:21 GMT)
- マルチエージェント化に利点があるのか?が興味深い論文。「We reveal that multi-agent performance exhibits an inverted-U relationship with coordination complexity, with benefits diminishing beyond moderate coordination levels. Domain complexity emerges as the strongest performance predictor (𝛽= −0.114, 𝑝< 0.002), reducing MAS advantage more substantially than architectural choices. Performance gains vary dramatically by task structure: +80.9% on Finance Agent versus −70.0% on PlanCraft, indicating that coordination benefits depend tightly on task decomposability.」と納得感がある(というかそうだよねという)結果
- InnoGym: Benchmarking the Innovation Potential of AI Agents [74.6]
InnoGymはAIエージェントのイノベーションの可能性を評価するために設計された最初のベンチマークである。 InnoGymは2つの相補的なメトリクスを紹介している。パフォーマンスゲイン(パフォーマンスゲイン)と、従来のアプローチと方法論的な違いを捉えるノベルティ(ノベルティ)だ。
論文 参考訳(メタデータ) (Mon, 01 Dec 2025 16:03:04 GMT)
- 「InnoGym consists of two complementary components: iBench, a benchmark designed to evaluate innovation capability, and iGym, a unified development and execution environment. iBench covers 18 carefully curated tasks drawn from real-world engineering and theoretical problems. We focus only on Improvable Tasks, which leave clear room for improvement in both solution quality and methodology.」というAIエージェントがイノベーションを起こせるかを計測しようとするベンチマーク
- リポジトリはhttps://github.com/zjunlp/igym
- Think in Parallel, Answer as One: Logit Averaging for Open-Ended Reasoning [102.1]
ThinkMergeは、トレーニング不要でプラグ&プレイのデコード戦略だ。 並列推論トレースをKで実行し、同期点における次のTokenロジットを平均化し、単一のコヒーレントな出力を生成する。
論文 参考訳(メタデータ) (Tue, 02 Dec 2025 15:35:31 GMT)
- 「(i) generate K diverse reasoning traces up to a delimiter token, e g </think> (ii) after the delimiter, decode one shared answer sequence by averaging the next- token logits across all K reasoning contexts at every autoregressive step.」という複数の思考を束ねるTHINKMERGEの提案、性能向上を確認とのこと。
- Are Your Agents Upward Deceivers? [73.1]
大規模言語モデル(LLM)ベースのエージェントは、ユーザのためにタスクを実行する自律的な従属者として、ますます使われています。 これは、人間の組織の個人がどのように上官に嘘をついて良いイメージを作り出したり、罰を免れるかのような、詐欺にも関与するかどうかという問題を提起する。 本研究では,環境制約に直面するエージェントが障害を隠蔽し,報告なしに要求されない動作を行う現象であるエージェント上行錯誤を観察・定義する。
論文 参考訳(メタデータ) (Thu, 04 Dec 2025 14:47:05 GMT)
- 「We evaluate 11 widely used LLM-based agents (e g , Deepseek-v3.1-terminus (DeepSeek-AI, 2024), GLM- 4.5 (Zeng et al , 2025), Gemini-2.5-pro (Comanici et al , 2025)) on our task suite, and the results are striking: agen- tic upward deception is pervasive across all agents. They frequently guess, simulate outcomes, or silently switch in- formation sources when a task cannot be completed, yet still return confident and seemingly valid answers without flagging any anomalies. Most concerningly, several models even fabricate a file locally and disguise it as a successfully downloaded one.」との指摘。生成AIを使っているとしばしば目にする動きではあるが、整理されるとなかなかに衝撃的。
- リポジトリはQingyuLiu/Agentic-Upward-Deception · GitHub
- Measuring Agents in Production [133.8]
プロダクションエージェントは通常、シンプルで制御可能なアプローチで構築されています。 信頼性は依然として最大の開発課題であり、エージェントの正しさの確保と評価の難しさによって推進されます。
論文 参考訳(メタデータ) (Tue, 02 Dec 2025 16:45:10 GMT)
- AIエージェント利用に関する調査。現状は効率化や人間の補完を目指した利用が多い、課題は信頼性など納得感がある。「Production agents favor well-scoped, static work-flows: 68% execute at most ten steps before requiring human intervention, with 47% executing fewer than five steps. Furthermore, 85% of detailed case studies forgo third-party agent frameworks, opting instead to build custom agent ap- plication from scratch. Organizations deliberately constrain agent autonomy to maintain reliability.」も現状はそうだろうと思いつつ、徐々に変化していくんだろうなと思わなくもない。
- Nex-N1: Agentic Models Trained via a Unified Ecosystem for Large-Scale Environment Construction [117.6]
本稿では,対話型環境の多様性と複雑さを体系的にスケールする手法を提案する。 本手法は,3次元に対処することで,このスケーリングを実現する。 Nex-N1は、インフラストラクチャによって確立された多様な複雑なインタラクティブ環境に基づいてトレーニングします。
論文 参考訳(メタデータ) (Thu, 04 Dec 2025 16:57:02 GMT)
- 「NexA4A (Agent for Agent), a generative system that automatically synthesizes diverse agent architectures and workflows from natural language specifications; and NexGAP (General Agent-data Pipeline), which leverages real-world Model Context Protocol (MCP) tools and information fusion to generate massive-scale, end-to-end trajectories rooted in authentic execution.」とエージェント化を前提とした軌跡生成のフレームワーク。「Future work will focus on evolving this infrastructure into a large-scale simulation platform for Reinforcement Learning. We aim to automatically construct environments that are not only highly diverse and increasingly difficult but also objectively verifiable.」と書かれたFuture workに期待大。
- リポジトリはGitHub – nex-agi/Nex-N1