Gato: 汎用エージェント

  • A Generalist Agent [89.9]
    Gatoはマルチモーダル、マルチタスク、マルチエンボディメントのジェネリストポリシーである。 同じ重さのネットワークでも、Atariやキャプション画像、チャット、本物のロボットアームのスタックブロックなどをプレイできる。
    論文  参考訳(メタデータ)   (Thu, 12 May 2022 16:03:26 GMT)
    • DeepMindから発表された汎用的にタスクを解けるモデル。テキストだけでなく画像や関節のトルクといったデータもシーケンスとして扱って大規模言語モデルっぽい処理を行っている。
    • 「 Transformer sequence models are effective as multi-task multi-embodiment policies, including for real-world text, vision and robotics tasks.」ということで改めてTransformerの強力さが分かる。

Deep Learningによるソースコード理解のサーベイ

  • A Survey of Deep Learning Models for Structural Code Understanding [21.7]
    本稿では,コードデータから形成される構造について概観する。 近年のコード理解モデルは,シーケンスベースモデルとグラフベースモデルという2つのグループに分類されている。 メトリクスやデータセット、下流タスクも導入しています。
    論文  参考訳(メタデータ)   (Tue, 3 May 2022 03:56:17 GMT)
    • ソースコード分析へのDeepLearning活用についての幅広いサーベイ。

合成データ活用に関するサーベイ

  • Synthetic Data — what, why and how? [30.4]
    本資料は, 合成データ技術の現状を概観することを目的としている。 この記事は技術的でない聴衆を対象としているが、専門家に明確性を提供するための正式な定義がいくつか与えられている。
    論文  参考訳(メタデータ)   (Fri, 6 May 2022 14:27:45 GMT)
    • 合成データに関するサーベイ、主な観点としてprivate data release 、data de-biasing and fairness、data augmentation for robustnessを挙げ、関連領域(攻撃や防御など)についても記載がある。

ElitePLM: PLMの能力評価

  • ElitePLM: An Empirical Study on General Language Ability Evaluation of Pretrained Language Models [78.1]
    本稿では,事前学習型言語モデル(ElitePLM)の汎用言語能力評価に関する大規模実証的研究について述べる。 実験の結果,(1)訓練対象の異なるPLMは異なる能力試験に適しており,(2)下流タスクの微調整PLMはデータサイズや分布に敏感であり,(3)PLMは類似タスク間の転送性に優れていた。
    論文  参考訳(メタデータ)   (Tue, 3 May 2022 14:18:10 GMT)
    • Pretrained Language Modelの詳細評価。PLMといっても事前学習の内容やデータ、モデルサイズなど多種多様でそれがどのような能力を持つか(何に適しているか)参考になる。
    • リポジトリはGitHub – RUCAIBox/ElitePLM

Polyglot Prompt:マルチリンガル、マルチタスクなプロンプト

  • Polyglot Prompt: Multilingual Multitask PrompTraining [35.7]
    異なる言語から異なるタスクを(タスク/言語固有のモジュールを使わずに)モノリシックなフレームワークでモデル化できるだろうか? 学習フレームワークであるPolyglot Promptを開発し、適切な多言語プロンプトエンジニアリングの後、異なる言語やタスクの統一的な意味空間を学習するためのプロンプト手法を導入する。
    論文  参考訳(メタデータ)  参考訳(全文)  (Fri, 29 Apr 2022 17:40:50 GMT)
    • 英語を対象とすることが多いprompt系のモデルをマルチリンガルで、という報告。
    • Cross-lingual zero-shot transferが一定程度可能そうなのが興味深い。また、「(1) Could different languages benefit from each other by a monolithic framework?」「Yes」や「(2) Why does PolyPrompt work?」「The performance improvement of PolyPrompt mainly comes from the languages of non-Indo-European language families」という議論も面白い。日本語を扱う場合も重要だと思う。

Are All the Datasets in Benchmark Necessary?

  • Are All the Datasets in Benchmark Necessary? A Pilot Study of Dataset Evaluation for Text Classification [39.0]
    本稿では,ベンチマーク中のデータセットがすべて必要かどうかについて検討する。 9つのデータセットと36のシステムでの実験では、いくつかの既存のベンチマークデータセットはトップスコアシステムの識別にはほとんど寄与していない。
    論文  参考訳(メタデータ)  参考訳(全文)  (Wed, 4 May 2022 15:33:00 GMT)
    • データセットによってモデルの識別能力に差があり、いくつかのデータセットは能力の高いモデル識別に寄与していないとの報告。
    • 感覚的には自明であり「難しいデータセット」と呼んでいたものはあったが、改めて整理される重要な特性であることが分かる。

Flamingo: DeepMindのVisual Language Models(VLM)

  • Flamingo: a Visual Language Model for Few-Shot Learning [95.9]
    この機能を備えたビジュアル言語モデル(VLM)のファミリーであるFlamingoを紹介します。 柔軟性のおかげで、Flamingoモデルは大規模なマルチモーダルWebコーパスでトレーニングできる。 一つのFlamingoモデルが、数ショットの学習で新しい最先端の技術を実現できることを実証する。
    論文  参考訳(メタデータ)   (Fri, 29 Apr 2022 16:29:01 GMT)
    • DeepMindの大規模VLM。下記16タスク全てでfew-shotでのSoTA、および6つのタスクでfine tuning以上の結果を主張。
      • NextQA
      • iVQA
      • Flick30K
      • STAR
      • MSVDQA
      • OKVQA
      • HatefulMemes
      • VizWiz
      • VATEX
      • VQAv2
      • COCO
      • VisDial
      • TextVQA
      • MSRVTTQA
      • YouCook2
      • RareAct ※fine tuningの結果が得られていないため論文中では省略とのこと

Designing for Responsible Trust in AI Systems

  • Designing for Responsible Trust in AI Systems: A Communication Perspective [56.8]
    我々は、MATCHと呼ばれる概念モデルを開発するために、技術に対する信頼に関するコミュニケーション理論と文献から引き出す。 私たちは、AIシステムの能力として透明性とインタラクションを強調します。 我々は、技術クリエーターが使用する適切な方法を特定するのに役立つ要件のチェックリストを提案する。
    論文  参考訳(メタデータ)   (Fri, 29 Apr 2022 00:14:33 GMT)
    • AIシステムの信頼性が伝達される過程を「model(M) attribute」「system affordances (A) to communicate trustworthiness (T) cues (C) of the AI」「users’ cognitive processing of these cues by invoking trust-related heuristics (H)」に整理、ユースケース分析を行った報告。これら要素をまとめてMATCHと呼んでいる。
    • テクノロジーそのものよりも「AIが信頼できると伝える過程」に注目しており非常に興味深い。

EasyNLP:AlibabaのNLPツールキット

  • EasyNLP: A Comprehensive and Easy-to-use Toolkit for Natural Language Processing [38.9]
    EasyNLPは、NLPアプリケーションを簡単に構築できるように設計されている。 知識に富んだ事前訓練、知識蒸留、数発の学習が特徴である。 EasyNLPはAlibaba Group内の10以上のビジネスユニットに電力を供給している。
    論文  参考訳(メタデータ)   (Sat, 30 Apr 2022 13:03:53 GMT)

OPT(Open Pre-trained Transformer): オープンな大規模言語モデル

  • OPT: Open Pre-trained Transformer Language Models [99.6]
    125Mから175Bのパラメータからなるデコーダのみの事前学習トランスであるOpen Pre-trained Transformers (OPT)を提案する。 OPT-175BはGPT-3に匹敵するが, 炭素フットプリントの1/7しか必要としない。
    論文  参考訳(メタデータ)  参考訳(全文)  (Thu, 5 May 2022 11:44:30 GMT)
    • GPT-3相当の規模を持つオープンな大規模言語モデル。Data card、Model cardともに論文中にあり、構築過程なども記載がある。