コンテンツへスキップ
- QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries [89.2]
Query-based Video Highlights (QVHighlights) データセットを提示する。 これは1万本以上のYouTubeビデオで構成され、幅広いトピックをカバーしている。 データセット内の各ビデオには、(1)人が書いた自由形式のNLクエリ、(2)クエリに関するビデオw.r.t.の関連モーメント、(3)クエリに関連するすべてのクリップに対する5点満点のsaliencyスコアが注釈付けされている。
論文 参考訳(メタデータ) (Tue, 20 Jul 2021 16:42:58 GMT)
- A Survey on Deep Learning Technique for Video Segmentation [147.1]
ビデオセグメンテーションは幅広い応用において重要な役割を果たしている。 ディープラーニングベースのアプローチは、ビデオセグメンテーションに特化しており、魅力的なパフォーマンスを提供している。
論文 参考訳(メタデータ) (Fri, 2 Jul 2021 15:51:07 GMT)- Deep Learningを用いたビデオセグメンテーションに関するサーベイ。自動運転など応用範囲の広いタスクのサーベイで非常に有用。
- 引用数260と幅広い。アーキテクチャの変遷が興味深い。
- CLIP-It! Language-Guided Video Summarization [96.7]
この作業では、一般的性とクエリにフォーカスしたビデオ要約に対処する単一のフレームワークであるCLIP-Itを導入する。 本稿では,言語誘導型マルチモーダルトランスフォーマーを提案する。 本モデルは教師なしの設定に拡張することができる。 標準ビデオ要約データセット (tvsum と summe) とクエリ指向ビデオ要約データセット (qfvs) の両方において,ベースラインと先行作業とを有意差で上回っている。 本手法は強い一般化能力を示すため,転送設定の大幅な改善を実現した。
論文 参考訳(メタデータ) 参考訳(全文) (Thu, 1 Jul 2021 17:59:27 GMT)- ビデオの各フレームをキャプショニング、スコアリングしてフレームからキーショットを選択。エンコーディングにCLIPを利用すると優れた性能が出せるとのこと。
- MERLOT: Multimodal Neural Script Knowledge Models [74.1]
我々はMERLOTを紹介した。MERLOTは、翻訳された音声で何百万ものYouTubeビデオを視聴することで、マルチモーダルなスクリプト知識を学習するモデルである。 MERLOTは、時間的コモンセンスの強力なアウトオブボックス表現を示し、12の異なるビデオQAデータセット上で最先端のパフォーマンスを達成する。 Visual Commonsense Reasoning では、MERLOT が80.6%の精度で正解し、同じ大きさの最先端のモデルを3%以上上回っている。
論文 参考訳(メタデータ) (Fri, 4 Jun 2021 17:57:39 GMT)- マルチモーダル事前学習モデル。ファインチューニングによって多くのタスクでsota。性能の向上幅も大きい。