コンテンツへスキップ
- GaLore: Memory-Efficient LLM Training by Gradient Low-Rank Projection [139.2]
LLM(Large Language Models)のトレーニングは、重み付けやGPU状態の増大によって、メモリ上の重大な問題が発生する。 本研究では,メモリ効率のトレーニング戦略としてグラディエント・ローランド・プロジェクション(GaLore)を提案する。 私たちの8ビットのGaLoreは、BF16ベースラインと比較して、メモリを82.5%、トレーニング総メモリを63.3%削減します。
論文 参考訳(メタデータ) (Wed, 6 Mar 2024 07:29:57 GMT)
- LLMを扱う上で大問題になるメモリ効率を高めたトレーニング手法の提案。NVIDIA RTX 4090 RAM 24GBで7Bモデルを事前学習可能とのこと。
- Model Tells You What to Discard: Adaptive KV Cache Compression for LLMs [87.0]
大規模言語モデル(LLM)における生成推論のメモリフットプリントを削減するプラグイン・アンド・プレイ方式である適応KVキャッシュ圧縮を導入する。 我々は,アテンションモジュールの本質的な構造を明らかにするために,ターゲットプロファイリングを行う。 認識された構造に基づいて、我々はKVキャッシュを適応的に構築する: 注意頭上の長距離コンテキストを排除し、局所的なコンテキストを強調し、特別なトークンを中心とした注意頭上の特別なトークンを排除し、すべてのトークンに広く参加する注目頭に対して標準のKVキャッシュのみを使用する。
論文 参考訳(メタデータ) (Mon, 29 Jan 2024 06:25:00 GMT)
- LLMの推論で課題となるKVキャッシュの圧縮方法の提案。タスクによっても異なるが50%のメモリ圧縮は可能そうに見える。
- Deja Vu: Contextual Sparsity for Efficient LLMs at Inference Time [91.0]
数十億のパラメータを持つ大規模言語モデル(LLM)が、エキサイティングなAIアプリケーションに新たな波を巻き起こした。 既存の方法は、コストのかかる再訓練が必要か、LLMのコンテキスト内学習能力を捨てるか、ウォールクロックのスピードアップを達成できないかのいずれかである。 DejaVuは,各層に与えられた入力をリアルタイムで予測するために,低コストなアルゴリズムを用いたシステムである。
論文 参考訳(メタデータ) (Thu, 26 Oct 2023 05:01:09 GMT)
- リポジトリはGitHub – FMInference/DejaVu
- FLM-101B: An Open LLM and How to Train It with $100K Budget [64.8]
大規模言語モデル(LLM)は、NLPおよびマルチモーダルタスクにおいて顕著な成功を収めた。 LLMは違法に高価であり、少数のメジャープレイヤーだけがトレーニングを受けることが可能である。 101B パラメータと 0.31TB トークンを持つ LLM が 1K の予算でトレーニング可能であることを示す。
論文 参考訳(メタデータ) (Thu, 7 Sep 2023 17:07:36 GMT)
- 限られた予算での大規模言語モデル構築を扱った論文。100B+パラメータのモデルを100,000 USDで作り、他の主要モデルと競合的な性能とのこと。モデル構築戦略が非常に興味深い。(データ側の話が少ないような。。。)
- モデルはCofeAI/FLM-101B · Hugging Faceで公開され、Apache-2、英語・中国語のバイリンガル
- Computation-efficient Deep Learning for Computer Vision: A Survey [121.8]
ディープラーニングモデルは、さまざまな視覚的知覚タスクにおいて、人間レベルのパフォーマンスに到達または超えた。 ディープラーニングモデルは通常、重要な計算資源を必要とし、現実のシナリオでは非現実的な電力消費、遅延、または二酸化炭素排出量につながる。 新しい研究の焦点は計算効率のよいディープラーニングであり、推論時の計算コストを最小限に抑えつつ、良好な性能を達成することを目指している。
論文 参考訳(メタデータ) (Sun, 27 Aug 2023 03:55:28 GMT)
- 効率的な画像処理モデルに関するサーベイ
- 「Efficient Backbone Models / Dynamic Deep Networks」→「Task-specialized Efficient Models」→「Model Compression Techniques」→「Efficient Deployment on Hardware」と様々なレイヤで調査がされている。
- A Survey on Efficient Training of Transformers [72.3]
この調査は、トランスフォーマーの効率的なトレーニングに関する最初の体系的な概要を提供する。 トレーニング中の中間テンソルの計算コストとメモリコストを削減できる手法と,ハードウェア/アルゴリズムの共同設計手法を分析し比較する。
論文 参考訳(メタデータ) (Thu, 2 Feb 2023 13:58:18 GMT)
- 非常に広く用いられているTransformerについて効率的に学習を行うためのサーベイ。11ページ、引用数87と短め。
- GPT-3の学習コストが335 GPU-year、$4.6Mと推測されているとのことで、巨大なモデルを作ろうと思う場合はこの手の手法をよく調査する必要がある。