xLSTM: Extended Long Short-Term Memory

  • xLSTM: Extended Long Short-Term Memory [26.6]
    1990年代、Long Short-Term Memory (LSTM) の中心概念として、定数エラーカルーセルとゲーティングが導入された。 正規化と安定化を適切に行う指数ゲーティングを導入する。 i)スカラーメモリ,スカラー更新,新しいメモリ混合,(ii)行列メモリと共分散更新ルールと完全に並列化可能なmLSTM。
    論文  参考訳(メタデータ)   (Tue, 07 May 2024 17:50:21 GMT)
  • LSTMの拡張、「xLSTM models perform favorably on language modeling when compared to state-of-the-art methods like Transformers and State Space Models.」と主張。RWKVやMamba、Llamaと詳細な比較を行っているが、より大規模だとどうなるかが気になるところではある。

You Only Cache Once: Decoder-Decoder Architectures for Language Models 

  • You Only Cache Once: Decoder-Decoder Architectures for Language Models [132.4]
    大規模言語モデルのためのデコーダ・デコーダアーキテクチャであるYOCOを導入する。 YOCOはキーと値のペアを一度だけキャッシュする。 全体的なモデルはデコーダのみのTransformerのように振る舞うが、YOCOは一度だけキャッシュする。
    論文  参考訳(メタデータ)   (Thu, 09 May 2024 14:12:45 GMT)
  • KVキャッシュ・計算ともに効率化可能なDecoder-Decoderモデル。3Bでの検証結果では同規模のOpenLLaMA、StableLMを超え、高速化効果が高い長いコンテキストでのNeedle-in-a-haystackも良好とのこと。ZeroSCROLLS benchmarkで長さが伸びた時も(MambaやHybridH3と異なり)Transformer同等の結果になっているのがすごい。
  • リポジトリはunilm/YOCO at master · microsoft/unilm · GitHub

Stream of Search (SoS): Learning to Search in Language

  • Stream of Search (SoS): Learning to Search in Language [29.8]
    本稿では,言語における探索の過程をフラットな文字列として表現することで,言語モデルがどのように学習するかを示す。 本稿では,複数のシンボル検索戦略を抽出する統一言語を提案する。 この結果から,言語モデルでは,探索による問題解決や,異なる探索戦略を柔軟に活用する自己改善,新たな探索手法の発見などが可能であることが示唆された。
    論文  参考訳(メタデータ)   (Mon, 01 Apr 2024 06:50:52 GMT)
  • 言語モデルに探索戦略を教え込むことが可能そうという報告。「We find that SoS pretraining increases search accuracy by 25% over models trained to predict only the optimal search trajectory.」、「The finetuned SoS models solve 36% of previously unsolved problems, including problems that cannot be solved by any of the heuristic solvers.」、Transformerは非常に強力。。
  • リポジトリはkanishkg/stream-of-search (github.com)

GSSMs vs transformerとBlack Mamba

GSSM(Generalized State Space Models)とtransformerの比較とMoEなアプローチ。昨日のMambaのICL(In Context Learning)性能 – arXiv最新論文の紹介 (devneko.jp)の通り、特性はかなり違うのでMoEっぽく使うのはありなのかもしれない。

  • Repeat After Me: Transformers are Better than State Space Models at Copying [57.4]
    一般化された状態空間モデルは、推論時間効率の観点からは有望であるが、入力コンテキストからのコピーを必要とするタスクのトランスフォーマーモデルと比較して限定的であることを示す。
    論文  参考訳(メタデータ)   (Thu, 1 Feb 2024 21:44:11 GMT)
  • シンプルな事例でのGSSMとtransformerの比較。当然なのかもだが「transformer models dramatically outperform state space models at copying and retrieving information from context.」
  • BlackMamba: Mixture of Experts for State-Space Models [10.2]
    状態空間モデル(SSM)は、最近、大規模な言語モデリングベンチマークでトランスフォーマーと競合する性能を示した。 MoEモデルは、計算コストと遅延コストを大幅に削減しながら、顕著なパフォーマンスを示している。 我々は,Mamba SSMとMoEを組み合わせた新しいアーキテクチャであるBlackMambaを紹介した。
    論文  参考訳(メタデータ)   (Thu, 1 Feb 2024 07:15:58 GMT)
  • リポジトリはZyphra/BlackMamba: Code repository for Black Mamba (github.com)、モデルも公開されている Zyphra/BlackMamba-2.8B · Hugging Face

Document Structure in Long Document Transformers

  • Document Structure in Long Document Transformers [64.8]
    長い文書は、しばしばセクションヘッダーや段落のような異なる機能で階層的に整理された要素を持つ構造を示す。 文書構造の不明瞭さにもかかわらず、自然言語処理(NLP)におけるその役割はいまだに不透明である。 長期文書変換モデルは事前学習中に文書構造の内部表現を取得するか? 事前トレーニング後に構造情報をモデルに伝達するにはどうすればよいのか、下流のパフォーマンスにどのように影響するのか?
    論文  参考訳(メタデータ)   (Wed, 31 Jan 2024 08:28:06 GMT)
  • 文書構造がモデルで扱われるか及び構造をモデルに入れ込む手法提案。「Results on LED and LongT5 suggest that they acquire implicit understanding of document structure during pretraining, which can be further enhanced by structure infusion, leading to improved endtask performance.」と肯定的な見解
  • リポジトリはhttps://github.com/UKPLab/eacl2024-doc-structureとのこと(現在は404)

BitNet

  • BitNet: Scaling 1-bit Transformers for Large Language Models [119.2]
    大規模言語モデル用に設計されたスケーラブルで安定した1ビットトランスフォーマーアーキテクチャであるBitNetを紹介する。 言語モデリングの実験結果から,BitNetはメモリフットプリントとエネルギー消費を大幅に削減しつつ,競争性能を向上することが示された。
    論文  参考訳(メタデータ)   (Tue, 17 Oct 2023 17:59:15 GMT)
  • LLMのための 1-bit Transformer architectureの提案。30Bとかなり大規模な設定で比較検証が行われており有効そうに見える。quantizationと比べて優勢があるとのこと。
  • プロジェクトサイトはAdvancing AI for humanity | Foundation of AI (thegenerality.com)

RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control

  • RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic Control [140.5]
    本研究では,インターネット規模のデータに基づいて学習した視覚言語モデルを,エンドツーエンドのロボット制御に直接組み込む方法について検討する。 提案手法は,インターネット規模のトレーニングから,RT-2による創発的能力の獲得を可能にした。
    論文  参考訳(メタデータ)   (Fri, 28 Jul 2023 21:18:02 GMT)
  • LLM + Robotのような研究が盛り上がっているが、本件ではアクションをトークン化しweb scaleのVQAデータセット+13機のロボット×17か月間のデータを使って学習を行ったとのこと。
  • プロジェクトサイトはRT-2: Vision-Language-Action Models (robotics-transformer2.github.io)
  • 参考としてRT-1はRT-1: Robotics Transformer – arXiv最新論文の紹介 (devneko.jp)

A Comprehensive Survey on Applications of Transformers for Deep Learning Tasks

  • A Comprehensive Survey on Applications of Transformers for Deep Learning Tasks [60.4]
    Transformerは、シーケンシャルデータ内のコンテキスト関係を理解するために自己認識メカニズムを使用するディープニューラルネットワークである。 Transformerモデルは、入力シーケンス要素間の長い依存関係を処理し、並列処理を可能にする。 我々の調査では、トランスフォーマーベースのモデルのためのトップ5のアプリケーションドメインを特定します。
    論文  参考訳(メタデータ)   (Sun, 11 Jun 2023 23:13:51 GMT)
  • Transformerの適用に関する総合的なサーベイ、分野としてNatural Language Processing, Computer Vision, Multi-Modal, Audio/Speech, Signal Processingを挙げ、様々な手法を紹介している。
  • 時系列での手法進化を振り返るのに良いサーベイ

A Survey on Efficient Training of Transformers

  • A Survey on Efficient Training of Transformers [72.3]
    この調査は、トランスフォーマーの効率的なトレーニングに関する最初の体系的な概要を提供する。 トレーニング中の中間テンソルの計算コストとメモリコストを削減できる手法と,ハードウェア/アルゴリズムの共同設計手法を分析し比較する。
    論文  参考訳(メタデータ)   (Thu, 4 May 2023 01:23:12 GMT)
  • Transformerの効率的な学習に関するサーベイ、ver3

Unlimiformer