Transformers without Normalization 

  • Transformers without Normalization [58.8]
    トランスフォーマーの正規化レイヤのドロップイン置換として、DyT($x$) = tanh(alpha $x$)$という要素演算式であるDynamic Tanh(DyT)を導入する。 我々は、認識から生成、教師付き学習、教師付き学習、コンピュータビジョンから言語モデルまで、様々な環境において、DyTを用いたトランスフォーマーの有効性を検証する。
    論文  参考訳(メタデータ)   (Thu, 13 Mar 2025 17:59:06 GMT)
  • 「We introduce Dynamic Tanh (DyT), an element-wise operation DyT(x) = tanh(αx), as a drop-in replacement for normalization layers in Transformers.」とのこと。知見として興味深く、「DyT improves training and inference speed, making it a candidate for efficiency-oriented network design.」と計算コスト的にも有利とのこと。

Native Sparse Attention: Hardware-Aligned and Natively Trainable Sparse Attention

  • Native Sparse Attention: Hardware-Aligned and Natively Trainable Sparse Attention [32.5]
    我々は、アルゴリズムのイノベーションとハードウェアの最適化を統合する、ネイティブにトレーニング可能なスパースアテンションメカニズムであるNSAを紹介する。 NSAは動的な階層的なスパース戦略を採用し、粗粒のトークン圧縮と細粒のトークン選択を組み合わせて、グローバルなコンテキスト認識と局所的精度の両方を維持する。
    論文  参考訳(メタデータ)   (Sun, 16 Feb 2025 11:53:44 GMT)
  • DeepSeekによる階層的、スパースなアテンションの提案。通常の実装に比べ数倍以上高速。
  • 「Following the common practice in state-of-the-art LLMs, our experiments adopt a backbone combining Grouped-Query Attention (GQA) and Mixture-of-Experts (MoE), featuring 27B total parameters with 3B active parameters.」という構成で実験をしており、品質もAverageではfull attention以上という成績。

Byte Latent Transformer: Patches Scale Better Than Tokens

  • Byte Latent Transformer: Patches Scale Better Than Tokens [101.1]
    Byte Latent Transformer (BLT) はバイトを動的サイズのパッチにエンコードする。 固定推論コストに対して、BLTはパッチとモデルサイズの両方を同時に拡大することにより、トークン化ベースのモデルよりもはるかに優れたスケーリングを示している。
    論文  参考訳(メタデータ)   (Fri, 13 Dec 2024 05:33:32 GMT)
  • バイト単位のTransformerは様々提案されてきたが、大規模なモデル構築は計算量の点で厳しかった。本件では「To efficiently allocate compute, we propose a dynamic, learnable method for grouping bytes into patches (§2) and a new model architecture that mixes byte and patch information.」という手法を提案。「Overall, for fixed inference costs, BLT shows significantly better scaling than tokenization-based models, by simultaneously growing both patch and model size.」とのこと。
  • リポジトリはGitHub – facebookresearch/blt: Code for BLT research paper

Mixture-of-Transformers

  • Mixture-of-Transformers: A Sparse and Scalable Architecture for Multi-Modal Foundation Models [112.0]
    Mixture-of-Transformer (MoT) はスパースマルチモーダルトランスアーキテクチャである。 MoTはモデルの非埋め込みパラメータをモダリティで分離する。 複数の設定とモデルスケールでMoTを評価する。
    論文  参考訳(メタデータ)   (Thu, 07 Nov 2024 18:59:06 GMT)
  • 性能がルータに依存するMixture of Expertsに対して、「MoT extends the standard transformer architecture by incorporating modality-specific weights for all non-embedding model parameters, including feed-forward networks, attention matrices, and layer normalization.」というアプローチのMixture of Transformerの提案。「In the Chameleon 7B setting (autoregressive text-and-image generation), MoT matches the dense baseline’s performance using only 55.8% of the FLOPs.」と有効性を主張。

Fundamental Limitations on Subquadratic Alternatives to Transformers 

  • Fundamental Limitations on Subquadratic Alternatives to Transformers [3.5]
    文書類似性タスクに重点を置いており、入力された多くの文書として与えられ、最もよく似たペアを見つけたいと思っています。 我々はTransformerがこのタスクを実行できることを証明し、このタスクはどんなアルゴリズムでも真に2次時間で実行できないことを証明した。
    論文  参考訳(メタデータ)   (Sat, 05 Oct 2024 19:21:13 GMT)
  • 「We focus on document similarity tasks, where one is given as input many documents and would like to find a pair which is (approximately) the most similar. We prove that Transformer is able to perform this task, and we prove that this task cannot be performed in truly subquadratic time by any algorithm.」という主張。
  • その手のタスクがあるのはそうだろうというのとドキュメント類似性タスクに関する分析はとても興味深い。特に「Theorem 3.1. Assuming SETH or OVC, for every ε > 0, there exists a constant c > 0 such that γ-LSDn,ℓ cannot be solved in O(n^2−ε) time for any γ ≥ 1 when ℓ = c log n.」は面白い結果。(実用上は、というと話が変わる場合も多い印象ではありつつ)この手の理論解析は重要。

How Numerical Precision Affects Mathematical Reasoning Capabilities of LLMs 

  • How Numerical Precision Affects Mathematical Reasoning Capabilities of LLMs [69.6]
    本稿では,変圧器を用いた大規模言語モデルの数学的タスクにおける有効性に影響を与える重要な要因として,数値的精度を同定する。 その結果,数値精度の低いトランスフォーマーでは,繰り返し加算や整数乗算などの算術的なタスクに対処できないことがわかった。 対照的に、標準的な数値精度のトランスフォーマーは、モデルサイズを大幅に小さくすることで、これらのタスクを効率的に処理することができる。
    論文  参考訳(メタデータ)   (Thu, 17 Oct 2024 17:59:35 GMT)
  • 「Our results show that Transformers operating with low numerical precision fail to address arithmetic tasks, such as iterated addition and integer multiplication, unless the model size grows super-polynomially with respect to the input length.」という指摘。

A Survey of Transformer Enabled Time Series Synthesis 

  • A Survey of Transformer Enabled Time Series Synthesis [38.9]
    生成AIは画像と言語領域で多くの注目を集めている。 本稿では,変換器,生成AI,時系列データの交点におけるこのギャップを明らかにする。 レビューされた研究はアプローチの多様さを示しており、ドメインがもたらす問題に対する決定的な回答にはまだ収束していない。
    論文  参考訳(メタデータ)   (Tue, 04 Jun 2024 13:52:42 GMT)
  • Transformerと時系列データに関するサーベイ
  • TNNでtransformer neural network はあまり見ない略し方

Transformer in Touch: A Survey 

  • Transformer in Touch: A Survey [29.6]
    自然言語処理の分野で最初に大きな成功を収めたTransformerモデルは、最近、触覚認識の応用に大きな可能性を示している。 本稿では,触覚技術におけるトランスフォーマーの適用と開発について概観する。
    論文  参考訳(メタデータ)   (Tue, 21 May 2024 13:26:27 GMT)
  • 触覚の領域にもTransformerが応用されつつあるようで、そのサーベイ
  • いろいろなところで使われていて本当にすごい

xLSTM: Extended Long Short-Term Memory

  • xLSTM: Extended Long Short-Term Memory [26.6]
    1990年代、Long Short-Term Memory (LSTM) の中心概念として、定数エラーカルーセルとゲーティングが導入された。 正規化と安定化を適切に行う指数ゲーティングを導入する。 i)スカラーメモリ,スカラー更新,新しいメモリ混合,(ii)行列メモリと共分散更新ルールと完全に並列化可能なmLSTM。
    論文  参考訳(メタデータ)   (Tue, 07 May 2024 17:50:21 GMT)
  • LSTMの拡張、「xLSTM models perform favorably on language modeling when compared to state-of-the-art methods like Transformers and State Space Models.」と主張。RWKVやMamba、Llamaと詳細な比較を行っているが、より大規模だとどうなるかが気になるところではある。

You Only Cache Once: Decoder-Decoder Architectures for Language Models 

  • You Only Cache Once: Decoder-Decoder Architectures for Language Models [132.4]
    大規模言語モデルのためのデコーダ・デコーダアーキテクチャであるYOCOを導入する。 YOCOはキーと値のペアを一度だけキャッシュする。 全体的なモデルはデコーダのみのTransformerのように振る舞うが、YOCOは一度だけキャッシュする。
    論文  参考訳(メタデータ)   (Thu, 09 May 2024 14:12:45 GMT)
  • KVキャッシュ・計算ともに効率化可能なDecoder-Decoderモデル。3Bでの検証結果では同規模のOpenLLaMA、StableLMを超え、高速化効果が高い長いコンテキストでのNeedle-in-a-haystackも良好とのこと。ZeroSCROLLS benchmarkで長さが伸びた時も(MambaやHybridH3と異なり)Transformer同等の結果になっているのがすごい。
  • リポジトリはunilm/YOCO at master · microsoft/unilm · GitHub