Amazon Nova, OpenAI o-1 pro, Gemini-Exp-1206, Llama 3.3

先週はLLM関連の話題が特に多い週だった。Amazon、OpenAI、Google、Metaが大きめのリリースを出しており、OpenAIはこれから発表を続けていくとのことでとても楽しみである。

各社の競争が非常に激しい。

Model Context Protocol (MCP), QwQ, OLMo 2

先週も様々なニュースがあったが、注目はAnthropicのModel Context Protocolである。 Introducing the Model Context Protocol \ AnthropicIntroduction – Model Context Protocol

ザックリとはLLMと外部データやツールを統合するためのプロトコルである。外部ツール利用やメモリの拡張利用などを前提としたLLMを構築する場合、この手の標準があるかないかは重要。MCPがデファクトスタンダードとなれるか興味津々。

公開モデル関連では極めて性能の高いQwen with Questions(QwQ)、以前取り上げたDolmaとOLMo – arXiv最新論文の紹介のver 2であるOLMo 2に要注目である。O1 Replication JurneyやTULU3もだが、どのような手法、アプローチで性能が上がるのかなどをオープンにした取り組みの価値は高い。

  • O1 Replication Journey — Part 2: Surpassing O1-preview through Simple Distillation, Big Progress or Bitter Lesson? [30.9]
    本稿では,OpenAIのO1モデル機能を複製する現在のアプローチについて,批判的な考察を行う。 O1のAPIからの単純な蒸留と教師付き微調整を組み合わせることで、複雑な数学的推論タスクにおいて優れた性能が得られることを示す。
    論文  参考訳(メタデータ)   (Mon, 25 Nov 2024 15:31:27 GMT)
  • OpenAI o1に関する研究、Fugu-MT 論文翻訳(概要): O1 Replication Journey: A Strategic Progress Report — Part 1からのPart2。「While our previous work (Part 1 (Qin et al , 2024)) explored the fundamental technical path to O1 replication, this study reveals how simple distillation from O1’s API, combined with supervised fine-tuning, can achieve superior performance on complex mathematical reasoning tasks.」はまぁいいとして「Notably, despite training only on mathematical problem-solving data, our models demonstrated strong generalization to open-ended QA tasks and became significantly less susceptible to sycophancy after fine-tuning.」は驚き。
  • リポジトリはGitHub – GAIR-NLP/O1-Journey: O1 Replication Journey: A Strategic Progress Report – Part I
  • TÜLU 3: Pushing Frontiers in Open Language Model Post-Training [94.1]
    我々は、完全にオープンな最先端の訓練後モデルであるT”ULU 3を紹介する。 T”ULU 3はLlama 3.1ベースモデルをベースにしており、Llama 3.1、Qwen 2.5、Mistral、さらにGPT-4o-mini、Claude 3.5-Haikuといったクローズドモデルにも勝っている。
    論文  参考訳(メタデータ)   (Fri, 22 Nov 2024 18:44:04 GMT)
  • リポジトリはGitHub – allenai/open-instruct

Technical Report: Enhancing LLM Reasoning with Reward-guided Tree Search / LLaVA-CoT(LLaVA-o1)

  • Technical Report: Enhancing LLM Reasoning with Reward-guided Tree Search [95.1]
    o1のような推論アプローチは困難で、研究者はこのオープンな研究領域を前進させようとさまざまな試みを行ってきた。 本稿では,報酬誘導木探索アルゴリズムを用いて,LLMの推論能力を高めるための予備的な検討を行う。
    論文  参考訳(メタデータ)   (Mon, 18 Nov 2024 16:15:17 GMT)
  • o1-like reasoning systemsを実現するための検討、「In this paper, we present a preliminary exploration into enhancing the reasoning abilities of LLMs through reward-guided tree search algorithms.」とのこと。Marco-o1の報告、DeepSeek-R1の主張(A Chinese lab has released a ‘reasoning’ AI model to rival OpenAI’s o1 | TechCrunch)を含め、速攻で近いものの提案が始まる激しい競争環境。マルチモーダルでの有効性も報告(下記)されていて今後が楽しみ。
  • サーベイに近いかと思いきや実験結果などもあり参考になる。
  • LLaVA-o1: Let Vision Language Models Reason Step-by-Step [33.7]
    LLaVA-o1は、自律的な多段階推論を実現するために設計された新しいVLMである。 チェーン・オブ・シークレットのプロンプトとは異なり、LLaVA-o1は独立に要約、視覚的解釈、論理的推論、結論生成の逐次的な段階に関与する。 100kのトレーニングサンプルと単純な推論時間スケーリング法により、LLaVA-o1はベースモデルよりも8.9%性能が向上する。
    論文  参考訳(メタデータ)   (Fri, 15 Nov 2024 18:58:31 GMT)
  • リポジトリはGitHub – PKU-YuanGroup/LLaVA-CoT: LLaVA-CoT, a visual language model capable of spontaneous, systematic reasoning、「Based on recent feedback from social media platforms like X, we have decided to rename LLaVA-o1 to LLaVA-CoT.」とのこと。

Marco-o1: Towards Open Reasoning Models for Open-Ended Solutions 

  • Marco-o1: Towards Open Reasoning Models for Open-Ended Solutions [40.2]
    Marco-o1は数学、物理学、コーディングなどの標準解を持つ分野に焦点を当てている。 o1モデルは、明確な標準が欠如し、報酬が定量化が難しい広い領域に効果的に一般化しますか? Marco-o1は、Chain-of-Thoughtファインチューニング、Monte Carlo Tree Search (MCTS)、リフレクションメカニズム、革新的な推論戦略によって実現されている。
    論文  参考訳(メタデータ)   (Thu, 21 Nov 2024 18:37:33 GMT)
  • 「Our Marco-o1 enhances the reasoning ability by integrating Chain-of-Thought (CoT) fine-tuning, Monte Carlo Tree Search (MCTS), and novel reasoning action strategies.」というo1ライクなモデル構築に関する報告。
  • Scaling of Search and Learning: A Roadmap to Reproduce o1 from Reinforcement Learning Perspective [77.9]
    OpenAIは、o1の背後にある主要な技術は強化学習であると主張している。 本稿では、強化学習の観点から、o1を達成するためのロードマップを分析する。
    論文  参考訳(メタデータ)   (Wed, 18 Dec 2024 18:24:47 GMT)
  • 「In this paper, we present a roadmap for reproducing o1 from the perspective of reinforcement learning, emphasizing key components such as policy initialization, reward design, search, and learning.」という論文も。

Evaluation of OpenAI o1: Opportunities and Challenges of AGI / On The Planning Abilities of OpenAI’s o1 Models: Feasibility, Optimality, and Generalizability

  • Evaluation of OpenAI o1: Opportunities and Challenges of AGI [112.1]
    o1-previewは目覚ましい能力を示し、しばしば人間レベルまたは優れたパフォーマンスを実現した。 このモデルは、様々な分野にわたる複雑な推論と知識の統合を必要とするタスクに優れていた。 総合的な結果は、人工知能への大きな進歩を示している。
    論文  参考訳(メタデータ)   (Fri, 27 Sep 2024 06:57:00 GMT)
  • OpenAI o1の詳細な検証。「Advanced Reasoning Capabilities: o1-preview demonstrated exceptional logical reasoning abilities in multiple fields, including high school mathematics, quantitative investing, and chip design」、「Domain-Specific Knowledge: The model exhibited impressive knowledge breadth across diverse fields such as medical genetics, radiology, anthropology, and geology.」、「It often performed at a level comparable to or exceeding that of graduate students or early-career professionals in these domains.」と高い行がされている。一方で「However, it still lacks the flexibility and adaptability of human experts in these fields.」、「It demonstrated the ability to capture complex expressions like irony and sarcasm, though it still struggles with very subtle emotional nuances.」という指摘も。
  • 関わっている方も多く他分野からの詳細な検証結果、非常に参考になる。
  • On The Planning Abilities of OpenAI’s o1 Models: Feasibility, Optimality, and Generalizability [59.7]
    さまざまなベンチマークタスクでOpenAIのo1モデルの計画能力を評価する。 その結果,o1-preview は GPT-4 よりもタスク制約に順応していることがわかった。
    論文  参考訳(メタデータ)   (Mon, 30 Sep 2024 03:58:43 GMT)
  • 計画能力を対象としたo1の評価。GPT-4oと比べて優れているとのこと。
  • 1. Understanding the Problem、2. Following Constraints、3. State and Memory Management、4. Reasoning and GeneralizationでFindingsがまとめられている。いずれも強力だが、3.については「as problem complexity increased, the model’s state management became less reliable, particularly in tasks involving spatial reasoning across multiple dimensions.」、4.については「While o1-preview showed some promise in its generalization ability, particularly in structured environments like Grippers, its performance in more abstract tasks like Termes revealed substantial limitations. The model struggled with reasoning under conditions where actions and outcomes were less directly tied to the natural language representation of the task, highlighting an area for future improvements.」という指摘も
  • When a language model is optimized for reasoning, does it still show embers of autoregression? An analysis of OpenAI o1 [20.1]
    o1 は OpenAI の新しいシステムで,従来の LLM と異なり,推論に最適化されている。 多くの場合、o1 は従来の LLM よりも大幅に優れており、特に共通タスクの稀な変種に対して大きな改善が加えられている。 しかし、o1は以前のシステムで観測したのと同じ定性的傾向を示している。
    論文  参考訳(メタデータ)   (Wed, 02 Oct 2024 17:50:19 GMT)
  • 「On many of the tasks we considered, o1 performed substantially better than the LLMs we had previously evaluated, with particularly strong results on rare variants of common tasks. However, it still qualitatively showed both of the central types of probability sensitivity discussed in McCoy et al (2023): sensitivity to output probability and sensitivity to task frequency.」という指摘。

OpenAI o1の評価、A Preliminary Study of o1 in Medicine: Are We Closer to an AI Doctor?

OpenAI o1の評価結果が様々出ている。医療シナリオでの評価は特に興味深い。Gemini のアップデートもあり、Claude 3.5 Opusの噂もあり、商用モデルの競争も激しい。

Updated production-ready Gemini models, reduced 1.5 Pro pricing, increased rate limits, and more – Google Developers Blog (googleblog.com)

  • A Preliminary Study of o1 in Medicine: Are We Closer to an AI Doctor? [33.7]
    OpenAIのo1は、強化学習戦略を使ったチェーン・オブ・ソート技術を使った最初のモデルとして際立っている。 本報告では、様々な医療シナリオにおけるo1の総合的な探索を行い、理解、推論、多言語性という3つの重要な側面について検討する。
    論文  参考訳(メタデータ)   (Mon, 23 Sep 2024 17:59:43 GMT)
  • 「Our analysis of o1 suggests that the enhanced reasoning ability of LLMs may (significantly) benefit their capability to understand various medical instructions and reason through complex clinical scenarios.」との評価で、GPT-4oや3.5を上回る結果。
  • リポジトリはA Preliminary Study of o1 in Medicine: Are We Closer to an AI Doctor? (ucsc-vlaa.github.io)

  • A Case Study of Web App Coding with OpenAI Reasoning Models [1.7]
    我々は,OpenAIの最新推論モデルであるo1-previewとo1-miniによるコーディングタスクのケーススタディを,他のフロンティアモデルと比較した。 o1モデルは、シングルタスクのベンチマークであるWebApp1Kに対して、SOTA結果を提供する。この結果、WebApp1K-Duoは、多くのタスクとテストケースを倍にする、より難しいベンチマークである。
    論文  参考訳(メタデータ)   (Thu, 19 Sep 2024 06:58:02 GMT)
  • WebApp1K(GitHub – onekq/WebApp1k: WebApp1k benchmark)に対してはo1がSoTAである一方で、より長い出力が要求されるWebApp1K-Duo(onekq-ai/WebApp1K-Duo-React · Datasets at Hugging Face)ではClaude 3.5 sonnetに負ける結果。
  • 「Specifically, the reasoning mechanism boosts performance when all expectations are captured, meanwhile exacerbates errors when key expectations are missed, potentially impacted by input lengths.」という指摘が興味深い。
  • WebApp1K Models Leaderboard – a Hugging Face Space by onekq-ai にLeader boardがある

  • Towards a Realistic Long-Term Benchmark for Open-Web Research Agents [0.2]
    ファイナンスやコンサルティングにおいて日常的に行われている,実世界のオープンウェブ研究課題に対するエージェントの評価を行った。 我々は、o1-preview、GPT-4o、Claude-3.5 Sonnet、Llama 3.1 (405b)、GPT-4o-miniといったエージェントアーキテクチャを構築し、テストした。 LLM全体では、サブタスクをサブエージェントに委譲する機能を備えたReActアーキテクチャが最もよく機能した。
    論文  参考訳(メタデータ)   (Wed, 25 Sep 2024 08:52:49 GMT)
  • 複数のベンチマークによる評価、総合的にo1は強力ではあるが、タスクや使い方による差異は大きそうに見える。
  • Can GPT-O1 Kill All Bugs? An Evaluation of GPT-Family LLMs on QuixBugs [2.2]
    この作業は、最近のGPT-o1モデルの公開リリースにインスパイアされている。 自動プログラム修復(APR)におけるGPTファミリーモデルの異なるバージョンの有効性の比較を行った。 O1の修復機能は、以前のGPTファミリーモデルよりも優れており、ベンチマークで40のバグを修正できた。
    論文  参考訳(メタデータ)   (Tue, 17 Sep 2024 01:49:17 GMT)
  • バグ修正におけるo1の評価。GPT-4oを超えている。
  • リポジトリはGitHub – Tomsawyerhu/GPT-O1-on-QuixBugs: Evaluating GPT-o1 on QuixBugs benchmark.