先週はChatGPT Atlas(ChatGPT Atlas)の話題が多かった。GUI Agent(より正確にはブラウザエージェント)のように人が操作しているようにUIを使うエージェントには期待大。
Ring-1TはAnt groupによるLRM、1TパラメータのMoE構成で性能も高い。
また、DeepSeek OCRもバズっていた。OCR性能というよりもコンテキストとして画像データを使う有効性が興味深い。OCRとしてはOlmoOCRのv2も出ていてOSSの動きも盛ん。
- Every Step Evolves: Scaling Reinforcement Learning for Trillion-Scale Thinking Model [100.9]
Ring-1Tは、数兆のパラメータを持つ最初のオープンソースの最先端の思考モデルである。 総パラメータは1兆で、1トークンあたり約500億を活性化する。
論文 参考訳(メタデータ) (Tue, 21 Oct 2025 17:46:14 GMT) - 大規模なLRM、規模が大きいということもあるがDeepSeek V3.1など既存の公開モデルを超える性能を主張
- リポジトリはGitHub – inclusionAI/Ring-V2: Ring-V2 is a reasoning MoE LLM provided and open-sourced by InclusionAI.。モデルはinclusionAI/Ring-1T · Hugging Face
- DeepSeek-OCR: Contexts Optical Compression [15.6]
我々は,DeepSeek-OCRを,光学的2次元マッピングによる長期コンテキストの圧縮の実現可能性に関する最初の調査として紹介する。 DeepSeek-OCRはDeepEncoderとDeepSeek3B-MoE-A570Mの2つのコンポーネントで構成されている。 実験により、テキストトークンの数がビジョントークンの10倍以内であれば、モデルがデコード(OCR)精度を97%達成できることが示された。
論文 参考訳(メタデータ) (Tue, 21 Oct 2025 02:41:44 GMT) - ドキュメントの画像をコンテキストとした扱う構成のLLM、「In this technical report, we propose DeepSeek-OCR and preliminarily validate the feasibility of contexts optical compression through this model, demonstrating that the model can effectively decode text tokens exceeding 10 times the quantity from a small number of vision tokens. We believe this finding will facilitate the development of VLMs and LLMs in the future.」と効率的なよう。
- リポジトリはGitHub – deepseek-ai/DeepSeek-OCR: Contexts Optical Compression
- olmOCR 2: Unit Test Rewards for Document OCR [29.5]
olmOCR 2は、PDFのようなデジタル化された印刷文書を、クリーンで自然に順序付けられたプレーンテキストに変換する強力なOCRシステム群の最新版です。 olmOCR 2は、強化学習を用いて訓練された7B視覚言語モデル(VLM)であるolmOCR-2-7B-1025で駆動される。 これらのテストケースに対するRLトレーニングは、我々の英語OCRベンチマークであるolmOCR-Benchにおける最先端のパフォーマンスをもたらすことを示す。
論文 参考訳(メタデータ) (Wed, 22 Oct 2025 17:53:02 GMT) - こちらはOCR、olmOCRのバージョン2。「To scale unit test creation, we develop a pipeline for generating synthetic documents with diverse and challenging layouts, known ground-truth HTML source code, and extracted test cases.」と合成データを活用するアプローチ。
- リポジトリはGitHub – allenai/olmocr: Toolkit for linearizing PDFs for LLM datasets/training