コンテンツへスキップ
- What and How does In-Context Learning Learn? Bayesian Model Averaging, Parameterization, and Generalization [111.3]
本稿では,インテクスト学習(ICL)の総合的研究を行う。 (a)言語モデルで学習されるICL推定器の種類は? b) ICLを正確に評価するのに適切なパフォーマンス指標と、エラー率について。 (c) トランスフォーマーアーキテクチャはどのようにICLを実現するのか? 答えは a) iclはベイズモデル平均化アルゴリズムを暗黙的に実装していることを示す。 このベイズモデル平均化アルゴリズムは注意機構によっておよそパラメータ化される。 b) ICLのパフォーマンスをオンライン学習の観点から分析し, ICLの入力シーケンス長が$T$である場合に, regret O(1/T)を確立する。 (c) 注意される符号化ベイズモデル平均化アルゴリズムに加えて, 学習モデルと名目モデルとの間の総変動距離は, 近似誤差(1/\sqrt{n_{\mathrm{p}}t_{\mathrm{p}}})$, ここで $n_{\mathrm{p}}$ と $t_{\mathrm{p}}$ はそれぞれトークン列の数とプリトレーニング中の各シーケンスの長さで区切られている。
論文 参考訳(メタデータ) (Tue, 30 May 2023 21:23:47 GMT)
- ICLの分析、本当なのかはちょっと疑問ではあるので証明を追ってみたいところ。
- How Do In-Context Examples Affect Compositional Generalization? [86.6]
本稿では,コンテクスト内構成一般化を検証するためのテストスイートであるCoFeを提案する。 構成一般化性能は、文脈内例の選択によって容易に影響を受けることが判明した。 我々の系統実験は、文脈内サンプルは、テストケースと構造的に似ており、互いに異なっており、個別に単純であることを示します。
論文 参考訳(メタデータ) (Thu, 25 May 2023 02:34:40 GMT)
- in context learningのテストスイートの提案、詳細な分析がなされており非常に参考になる。「Our systematic experiments indicate that in-context examples should be structurally similar to the test case, diverse from each other, and individually simple.」とあるのは直感的にもそうだとは思うが、それぞれの要素について検証がなされているのが凄い。
- リポジトリはContextualSP/cofe at master · microsoft/ContextualSP · GitHub
- What In-Context Learning “Learns” In-Context: Disentangling Task Recognition and Task Learning [24.4]
大規模言語モデル(LLM)は、いくつかのデモでタスクを解くためにコンテキスト内学習(ICL)を利用する。 ICLがデモを利用する2つの方法の特徴付けを行う。 TRのみを用いて非自明な性能を達成でき、TRはより大きなモデルやより多くのデモでさらに改善されないことTLの性能はコンテキストにおけるより多くのデモで一貫して改善されることを示す。
論文 参考訳(メタデータ) (Tue, 16 May 2023 18:05:19 GMT)
- in context learningをtask recognition (TR)、 task learning (TL)に分けて検証した論文。 タスクを知る動きとコンテキスト内デモでの学習は別物として扱えそうという結果で大変興味深い。
- リポジトリはGitHub – princeton-nlp/WhatICLLearns: https://arxiv.org/abs/2305.09731
- Larger language models do in-context learning differently [93.9]
言語モデルにおけるインコンテキスト学習(ICL)は、セマンティックな事前とインプット・ラベルのマッピングの影響を受けます。 ラベルをフリップしたICLと意味的無関係なラベルを持つICLの2つのセットアップについて検討した。
論文 参考訳(メタデータ) (Tue, 7 Mar 2023 12:24:17 GMT)
- モデルの大きさによってICLの効き方が異なるという論文 大きなモデルでは先行的に学んだ知識を上書きできるという事、小さなモデルではそれができないというのは非常に面白い。ICLが「ドメインを限定する」のか「内容を加味して判断している」のかがモデルの大きさによって違う?
- 十分に大きなモデルでは任意のラベルマッピングを行う能力がある?というのは、本当に新たなことを学んでいけると解釈して良いのだろうか。
- なんでこんなことができるんだろう・・・?