UniLog: ログ解析タスクを扱う統一モデル

  • UniLog: Deploy One Model and Specialize it for All Log Analysis Tasks [11.4]
    本研究では,マルチタスク学習手法としてログ解析を定式化し,様々なログ分析タスクを実行できる単一モデルを訓練することを提案する。この統合ログ分析手法をUniLogと呼ぶ。4つのログ分析タスクに関する7つのデータセットにわたる大規模な実験は、UniLogが顕著なパフォーマンスを達成することを示す。
    論文  参考訳(メタデータ)  参考訳(全文)  (Mon, 6 Dec 2021 16:49:33 GMT)
    • ログ分析タスク(anomaly detection, failure prediction, log compression, log summarization)を統一的に扱える手法を提案、7つのデータセットでSoTAまたはそれに近い結果を達成とのこと。

LAnoBERT: BERTを用いたシステムログからの異常検知

  • LAnoBERT : System Log Anomaly Detection based on BERT Masked Language Model [2.0]
    システムログ異常検出の目的は、人間の介入を最小限に抑えながら、即座に異常を識別することである。 従来の研究では、様々なログデータを標準化されたテンプレートに変換した後、アルゴリズムによる異常検出が行われた。 本研究では,BERTモデルを用いた自由システムログ異常検出手法であるLAnoBERTを提案する。
    論文  参考訳(メタデータ)  参考訳(全文)  (Thu, 18 Nov 2021 07:46:35 GMT)
    • BERTを用いたログからの異常検知で、ログパーサに依存せずに教師無しで優れた性能を達成とのこと。ログパーサ無しで性能を発揮できるのは面白い。