Parsing Objects at a Finer Granularity: A Survey

  • Parsing Objects at a Finer Granularity: A Survey [54.7]
    微細な視覚解析は、農業、リモートセンシング、宇宙技術など、多くの現実世界の応用において重要である。 卓越した研究努力は、異なるパラダイムに従って、これらのきめ細かいサブタスクに取り組む。 我々は,パート関係を学習する新たな視点から,先進的な研究を深く研究する。
    論文  参考訳(メタデータ)   (Wed, 28 Dec 2022 04:20:10 GMT)
  • 単純な物体認識ではなくさらに細かく物体を識別を行うfine-grained recognition や part segmentationのサーベイ

DUO(Detecting Underwater Objects)のデータセット・ベンチマーク

  • A Dataset And Benchmark Of Underwater Object Detection For Robot Picking [29.0]
    我々は,すべての関連するデータセットの収集と再アノテーションに基づいて,データセット,水中オブジェクトの検出(DUO)およびそれに対応するベンチマークを紹介する。 DUOはより合理的な注釈を持つ多様な水中画像のコレクションを含んでいる。 対応するベンチマークは、学術研究および産業応用のためのSOTAの効率と精度の指標を提供する。
    論文  参考訳(メタデータ)  参考訳(全文)  (Thu, 10 Jun 2021 11:56:19 GMT)
    • 水中での物体検出タスクのデータセット。代表的な手法のベンチマークも記載されている。水中での物体認識においては、深いネットワーク構造が役に立たないように見えるという指摘が興味深い。
    • データセットはhttps://github.com/chongweiliuで公開予定とのこと。