コンテンツへスキップ
- Detecting Anomalies within Time Series using Local Neural Transformations [30.7]
局所ニューラルトランスフォーメーション(Local Neural Transformations, LNT)は、データから時系列の局所変換を学ぶ方法である。 LNTは各タイムステップ毎に異常スコアを生成し、したがって時系列内の異常を検出するために使用できる。 我々の実験は,LNTがLibriSpeechデータセットから音声セグメントの異常を見つけ,サイバー物理システムへの割り込みを従来よりもより正確に検出できることを実証した。
論文 参考訳(メタデータ) (Tue, 8 Feb 2022 15:51:31 GMT)
- Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy [68.9]
異常の希少性のため, 系列全体と強い関連性を構築することは困難であり, 関連性は主に隣接点に集中していることが観察された。 通常の点と異常点の間に本質的に区別可能な基準を示しており、これはAssociation Discrepancy として強調する。関係の一致を計算するために,Anomaly-Attention機構を備えたAnomaly-Transformer を提案する。Anomaly Transformerは、6つの教師なし時系列異常検出ベンチマークで最先端のパフォーマンスを達成する
論文 参考訳(メタデータ) (Wed, 6 Oct 2021 10:33:55 GMT)- Transformerを用いて優れた性能の異常検知が可能との論文。概要の通り単純なTransforerではない。Ablation studyの分析が面白い。