コンテンツへスキップ
- Prompting for a conversation: How to control a dialog model? [9.3]
ダイアログモデルは大量のテキストでトレーニングされるが、その応答はダイアログエージェントの望ましいスコープとスタイルに制限される必要がある。 前者を達成するために使用されるデータセットには後者と互換性のない言語が含まれているため、事前訓練されたダイアログモデルは、より小さなキュレートされたデータセットで微調整される。 本稿では,上記のトレードオフを緩和できるかどうかを検討する。
論文 参考訳(メタデータ) (Thu, 22 Sep 2022 14:59:55 GMT)- 会話モデルに対するfine tuningの副作用とその緩和の話題。ケンブリッジ大学とAppleの共著で著者へのリファレンスがかわいい。
- リファレンスはおいておいて、dyamic-promptingという名称でテキストの多様性を生み出す能力を壊さずに特定タスクへの適応をあげている。
- SPACE-3: Unified Dialog Model Pre-training for Task-Oriented Dialog Understanding and Generation [123.4]
SPACE-3は、大規模対話コーパスから学習する、新しい半教師付き会話モデルである。 幅広いダウンストリームダイアログタスクを効果的に微調整できる。 その結果、SPACE-3は8つの下流ダイアログベンチマークで最先端のパフォーマンスを達成することがわかった。
論文 参考訳(メタデータ) (Wed, 14 Sep 2022 14:17:57 GMT)