Agentic Reasoning for Large Language Models [122.8] 推論は推論、問題解決、意思決定の基礎となる基本的な認知プロセスである。 大規模言語モデル(LLM)は、クローズドワールド設定では強力な推論能力を示すが、オープンエンドおよび動的環境では苦労する。 エージェント推論は、連続的な相互作用を計画し、行動し、学習する自律的なエージェントとしてLLMを解釈することでパラダイムシフトを示す。 論文参考訳(メタデータ) (Sun, 18 Jan 2026 18:58:23 GMT)
「Agentic reasoning positions reasoning as the central mechanism of intelligent agents, spanning foundational capabilities (planning, tool use, and search), self-evolving adaptation (feedback, and memory-driven adaptation), and collective coordination (multi-agent collaboration), realizable through either in-context orchestration or post-training optimization.」として整理されたサーベイ。In-context Reasoning、Post-training Reasoningの両方を含む。