eco2AI: 二酸化炭素排出量のトラッキングライブラリ

AIとクラウド環境と炭素排出

  • Measuring the Carbon Intensity of AI in Cloud Instances [91.3]
    我々は,ソフトウェアの炭素強度を測定するための枠組みを提供し,運転中の炭素排出量を測定することを提案する。 私たちは、Microsoft Azureクラウドコンピューティングプラットフォームにおける排出削減のための一連のアプローチを評価します。
    論文  参考訳(メタデータ)  参考訳(全文)  (Fri, 10 Jun 2022 17:04:04 GMT)
    • AI構築(と利用)におけるエネルギーの利用やCO2の排出は最近よく話題になる。そのようなテーマに対して整理し環境負荷を下げる方法をサジェストしている論文。
    • 本論文とは別件だが、Machine Learning CO2 Impact Calculator (mlco2.github.io)というサイトがあるくらい重要な話題になっている。

Green Deep Learningのサーベイ

  • A Survey on Green Deep Learning [25.7]
    本稿では,グリーンディープラーニング技術の発展を体系的にレビューすることに焦点を当てる。 提案手法は,(1)コンパクトネットワーク,(2)エネルギー効率のトレーニング戦略,(3)エネルギー効率の推論アプローチ,(4)データ利用率の4つのカテゴリに分類される。
    論文  参考訳(メタデータ)   (Wed, 10 Nov 2021 02:28:08 GMT)
    • 最近よく話題になるDeepLearningにおけるカーボンフットプリントのようなAIと環境との関わりのサーベイ。アーキテクチャ、学習、推論などモデル構築要素の他、データの使い方(Active LearningやFew shotなど)についても扱っている。各チャプターの整理図が良い感じでありがたい。

環境を考慮したAutoML

  • Towards Green Automated Machine Learning: Status Quo and Future Directions [55.4]
    AutoMLは数百のコントリビューションでホットな研究トピックになっている。 非常に資源集約的であることも知られており、批判の要点の1つである。 本稿では,この問題に対するAutoML研究者の意識を高め,治療の可能性について詳しく述べる。
    論文  参考訳(メタデータ)   (Wed, 10 Nov 2021 18:57:27 GMT)
    • AutoMLにおける環境考慮に関してまとめた論文、定量化への方針、 アプローチ・設計、ベンチマーク、透明性などについて詳細に解説している。AIと環境保護へのかかわりを知るにも良い内容。

SustainBench: SDGsに関連するベンチマーク

  1. SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning [63.2]
    国連持続可能な開発目標の進展は、主要な環境・社会経済指標のデータ不足によって妨げられている。 近年の機械学習の進歩により、衛星やソーシャルメディアなど、豊富な、頻繁に更新され、グローバルに利用可能なデータを活用することが可能になった。 本稿では,7個のSDGにまたがる15個のベンチマークタスクの集合であるSustainBenchを紹介する。
    論文  参考訳(メタデータ)   (Mon, 8 Nov 2021 18:59:04 GMT)
    • SDGsに関連するタスクを集めたデータセット・ベンチマーク。Leaderboardもあり、非常に面白い取り組みだと思う。
      1. Poverty prediction over space
      2. Poverty prediction over time
      3. Weakly supervised cropland classification
      4. Crop type classification
      5. Crop type mapping
      6. Crop yield prediction
      7. Field delineation
      8. Child mortality rate
      9. Women BMI
      10. Women educational attainment
      11. Water quality index
      12. Sanitation index
      13. Brick kiln detection
      14. Representation learning for land cover
      15. Out-of-domain land cover classification