コンテンツへスキップ
- A Survey on Unlearnable Data [27.3]
Unlearnable Data(ULD)は、機械学習モデルが特定のデータから意味のあるパターンを学ぶのを防ぐ革新的な防御技術として登場した。 我々は、異なるUDLアプローチを比較し、比較し、その強み、制限、および非学習性、不受容性、効率、堅牢性に関連するトレードオフを分析します。 本稿では, モデル劣化に伴う摂動不感のバランスや, ULD生成の計算複雑性など, 重要な課題について論じる。
論文 参考訳(メタデータ) (Sun, 30 Mar 2025 17:41:30 GMT)
- 「Unlearnable Data (ULD) refers to a category of data that has been deliberately modified through subtle perturbations, preventing models from effectively learning useful representations during training while maintaining perceptual quality for human observers.」のサーベイ。