RGB:  Retrieval-Augmented Generation Benchmark

  • Benchmarking Large Language Models in Retrieval-Augmented Generation [53.5]
    大規模言語モデルに対する検索拡張生成の影響を系統的に検討する。 我々は、RAGに必要な4つの基本能力で、異なる大規模言語モデルの性能を解析する。 RGB(Retrieval-Augmented Generation Benchmark)は、英語と中国語の両方でRAG評価を行うための新しいコーパスである。
    論文  参考訳(メタデータ)   (Mon, 4 Sep 2023 08:28:44 GMT)
  • LLM活用に欠かせないRAG能力をnoise robustness, negative rejection, information integration, counterfactual robustnessと整理、ベンチマークを構築。英語と中国語が対象。
  • リポジトリはGitHub – chen700564/RGB

MuRAG: マルチモーダルなRAG

  • MuRAG: Multimodal Retrieval-Augmented Generator for Open Question Answering over Images and Text [58.7]
    我々は,Multimodal Retrieval-Augmented Transformer (MuRAG)を提案する。 MuRAGは外部の非パラメトリックマルチモーダルメモリにアクセスして言語生成を増強する。 以上の結果から, MuRAGは最先端の精度を達成し, 既存のモデルよりも10~20%精度が高いことがわかった。
    論文  参考訳(メタデータ)   (Thu, 6 Oct 2022 13:58:03 GMT)
    • マルチモーダルなRAG、モダリティを追加することで性能も相応に向上している。