コンテンツへスキップ
- Using Large Language Models for Hyperparameter Optimization [31.5]
本稿では,高パラメータ最適化(HPO)において,基礎的大言語モデル(LLM)を用いて決定を行う。 実験的な評価により,LLMは従来のHPO法と同等あるいは同等に動作可能であることが示された。
論文 参考訳(メタデータ) (Thu, 7 Dec 2023 18:46:50 GMT)
- LLMを用いたハイパーパラメータのチューニング、「LLMs provide useful feedback for the error messages, which is infeasible with traditional approaches. 」というのはLLMの利点(直後に「However, this can suffer from the challenges that affect current language models, such as hallucinations」ともあるが。。。)。
- LLM360: Towards Fully Transparent Open-Source LLMs [89.1]
LLM360の目標は、すべての人がエンドツーエンドのトレーニングプロセスを透過的かつ再現可能にすることで、オープンで協力的なAI研究を支援することである。 LLM360の最初のステップとして、スクラッチから事前トレーニングされた2つの7BパラメータLSM、AmberとCrystalCoder、トレーニングコード、データ、中間チェックポイント、分析をリリースする。
論文 参考訳(メタデータ) (Mon, 11 Dec 2023 17:39:00 GMT)
- オープンなLLMを作ろうという取り組み。AMBER: 7B English LLM pretrained on 1.3T tokens CRYSTALCODER: 7B English and code LLM pretrained on 1.4T tokensをリリース
- プロジェクトサイトはLLM360 | Open-source LLMs for Transparency, Trust, and Collaborative Research 🚀