- Efficient Large Language Models: A Survey [37.9]
この調査は、効率的なLarge Language Models (LLMs) 研究の体系的で包括的なレビューを提供する。 文献を3つの主要なカテゴリからなる分類学で整理し、異なるが相互に相互に繋がる効率的なLLMのトピックを網羅する。 この調査で紹介された論文をコンパイルするGitHubリポジトリも作成しました。
論文 参考訳(メタデータ) (Wed, 6 Dec 2023 19:18:42 GMT) - LLMの効率化に関するサーベイ、手法開発が盛んでとても参考になる。
- リポジトリはGitHub – AIoT-MLSys-Lab/Efficient-LLMs-Survey: Efficient Large Language Models: A Survey
日: 2023年12月21日
Open-sourced Data Ecosystem in Autonomous Driving: the Present and Future
- Open-sourced Data Ecosystem in Autonomous Driving: the Present and Future [118.0]
このレビューは、70以上のオープンソースの自動運転データセットを体系的に評価する。 高品質なデータセットの作成の基礎となる原則など、さまざまな側面に関する洞察を提供する。 また、解決を保障する科学的、技術的課題も検討している。
論文 参考訳(メタデータ) (Wed, 6 Dec 2023 10:46:53 GMT) - 自動運転データセットのサーベイ。センサータイプが色々あるのが興味深い。オープンなものが多く出ていることに驚き。
- リポジトリはGitHub – OpenDriveLab/DriveAGI: Embracing Foundation Models into Autonomous Agent and System