APIDocBooster

  • APIDocBooster: An Extract-Then-Abstract Framework Leveraging Large Language Models for Augmenting API Documentation [21.9]
    APIDocBoosterは、抽出的(長さ制限のない忠実な要約を可能にする)と抽象的要約(コヒーレントで簡潔な要約を生成する)の両方の利点を融合させる。 APIDocBoosterは2つのステージで構成されている。 Sentence Section Classification (CSSC) と UPdate SUMmarization (UPSUM) である。
    論文  参考訳(メタデータ)   (Mon, 18 Dec 2023 05:15:50 GMT)
  • APIのドキュメントを作成するためにセクション認識、抽出型の要約、抽象型の要約を組み合わせる手法を提案。通常の方法でGPT-4を使った場合に比べて優れているとのこと。単純にLLMを使うよりも問題を適切に分割していって使うと効果的という結果に見受けられる。

Gemini: A Family of Highly Capable Multimodal Models 

  • Gemini: A Family of Highly Capable Multimodal Models [517.1]
    マルチモーダルモデルの新たなファミリーであるGeminiは、画像、オーディオ、ビデオ、テキスト理解にまたがる優れた機能を示している。 ファミリーはUltra、Pro、Nanoサイズで構成されており、複雑な推論タスクからオンデバイスメモリに制約のあるユースケースまで幅広い用途に適している。
    論文  参考訳(メタデータ)   (Tue, 19 Dec 2023 02:39:27 GMT)
  • Gemini – arXiv最新論文の紹介 (devneko.jp) の論文、arXiv版。改めて驚きの著者数。

ReST meets ReAct

  • ReST meets ReAct: Self-Improvement for Multi-Step Reasoning LLM Agent [50.5]
    外部知識に基づいて推論と行動を行うReAct-style LLMエージェントを開発した。 エージェントをReSTライクな手法で改良し,従来の軌道上で反復的に訓練する。 引き起こされた大きなモデルから始まり、アルゴリズムのたった2イテレーションの後に、微調整された小さなモデルを生成することができる。
    論文  参考訳(メタデータ)   (Fri, 15 Dec 2023 18:20:15 GMT)
  •  Reinforced Self-Training (ReST) を適用したReAct-style LLM agentの提案。ReAct的な動くで作ったtrajectoryのうち良いものを使ってfull fine-tuningとかなりの計算量が必要そうな手法。 少ない回数のイテレーションで良い性能を出せるとのこと。
  • 「employing growing-batch reinforcement learning with AI feedback for continuous self-improvement and self-distillation.」とあるが、自分で学んでいけるAIがてきつつあるんじゃないかという気もする。