NOAHQA(Numerical reasOning with interpretAble grapH QA dataset): 数値推論を必要とするバイリンガルQAデータセット

  • NOAHQA: Numerical Reasoning with Interpretable Graph Question Answering Dataset [26.8]
    数値推論を必要とする質問をバイリンガルなQAデータセットであるNOAHQAを紹介する。 我々は,NOAHQA上で既存のQAデータセットを用いてトレーニングした最先端QAモデルを評価し,その中の最良のものが55.5のEMスコアしか達成できないことを示す。 また、推論グラフの計量値が人間に比べて大きなギャップを持つような推論グラフを生成するための新しいQAモデルを提案する。
    論文  参考訳(メタデータ)  参考訳(全文)  (Wed, 22 Sep 2021 09:17:09 GMT)
    • 算数の文章題のような数値推論を必要とするQAを含むバイリンガル(英語、中国語)のデータセットを提案。データ数は約20K。先端的な構造を使っても人間とのパフォーマンス差が大きいと報告。

CodeQA: プログラムコードに対するQuestion Answering

  • CodeQA: A Question Answering Dataset for Source Code Comprehension [82.6]
    コードスニペットと質問が与えられたら、テキストによる回答を生成する必要がある。 CodeQAには、119,778の問合せペアを持つJavaデータセットと、70,085の問合せペアを持つPythonデータセットが含まれている。
    論文  参考訳(メタデータ)   (Fri, 17 Sep 2021 06:06:38 GMT)
    • ソースコードに対するQuestion Answeringを行うためのデータセット。コメント文などから生成しているそうだが、他にあまり見ない問題設定のよう思う。
    • リポジトリはhttps://github.com/jadecxliu/CodeQA

GD-VCR(Geo-Diverse Visual Commonsense Reasoning dataset): 地域特性を反映したVQA

  • Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning [49.0]
    視覚・言語モデルによる文化的・地理的コモンセンス理解能力をテストするためにGeo-Diverse Visual Commonsense Reasoning dataset(GD-VCR)を構築した。 その結果,東アジア,南アジア,アフリカを含む非西欧地域での両モデルの性能は,西欧地域に比べて著しく低いことがわかった。
    論文  参考訳(メタデータ)  参考訳(全文)  (Tue, 14 Sep 2021 17:52:55 GMT)
    • 結婚式の画像は地域やその文化によって大幅に異なるなど、地域的特性が出る画像がある。西欧、東アジア、南アジア、アフリカに関する画像328枚と886のQAペアからなるデータセットを作成、VisualBERTとViLBERT(VCRでトレーニング済み)がGD-VCRに対応可能か確認、西欧地域以外では性能が下がることが分かったとのこと。
      • 直感的にはそうなりそうだが確認されると興味深い結果。論文中の分析で地域特性(結婚式、宗教、祭りなど)を含むシナリオのギャップが大きいというのも納得感がある。顧客が登場するシナリオでも差が大きいとのことでこれは地元の商店で買い物をするか、スーパーマーケットで買い物をするかの差ではないかとのこと。この考察も面白い。

xGQA: 7言語の Visual Question Answering

  • xGQA: Cross-Lingual Visual Question Answering [100.4]
    xGQAは視覚的質問応答タスクのための新しい多言語評価ベンチマークである。 確立された英語GQAデータセットを7言語に拡張する。 本稿では,マルチモーダルトランスフォーマーモデルに適応するアダプタベースの新しいアプローチを提案する。
    論文  参考訳(メタデータ)   (Mon, 13 Sep 2021 15:58:21 GMT)
    •  7言語に対応するvisual question answeringデータセット。GQAデータセットを7言語に拡張。ゼロショットでの回答は難しく、few-shotのセッティングだと精度が改善するが依然として簡単ではないタスクであるよう。
    • リポジトリはhttps://github.com/Adapter-Hub/xGQA

SituatedQA:回答のために言語外の文脈が必要なQAデータセット

  • SituatedQA: Incorporating Extra-Linguistic Contexts into QA [7.5]
    SituatedQA(SituatedQA)は,時間的・地理的文脈を考慮に入れた質問に対して,システムが正しい回答を提示しなければならない,オープン検索型QAデータセットである。 質問を求める情報のかなりの割合は、文脈に依存した回答であることがわかった。 我々の研究は、既存のモデルが頻繁に更新される、あるいは珍しい場所から回答を得るのに苦労していることを示している。
    論文  参考訳(メタデータ)  参考訳(全文)  (Mon, 13 Sep 2021 17:53:21 GMT)
    • 回答のために言語外の文脈が必要なQAデータセットの提案。時間的or地理的を表すContext Typeとそれに対応したContext Valueによって答えが変化する。直感的にも予想できる通り、Leaderboardからは人間とモデルの差が大きい解くのが難しい問題のように見える。
    • プロジェクトサイトはhttps://situatedqa.github.io/

M5Product: 600万以上のマルチモーダルデータセット

  • M5Product: A Multi-modal Pretraining Benchmark for E-commercial Product Downstream Tasks [94.8]
    我々は600万以上のマルチモーダルペアからなるM5Productという大規模データセットをコントリビュートする。 M5Productには、画像、テキスト、テーブル、ビデオ、オーディオなど、複数のモードの豊富な情報が含まれている。
    論文  参考訳(メタデータ)  参考訳(全文)  (Thu, 9 Sep 2021 13:50:22 GMT)
    • e-コマースの画像、テキスト、テーブル、ビデオ、オーディオを含む6M件と大規模なマルチモーダルデータセット。このデータをもとにした検索・分類・クラスタリングなどのタスクで優れた性能を出すM5-MMTをベースラインとして提案。
    • プロジェクトサイトはhttps://xiaodongsuper.github.io/M5Product_dataset/

最近公開化された画像-テキスト 4億ペアからなるLAION-400M などマルチモーダルな大規模データセットが公開されるのは非常にありがたい。

Talk-to-Edit: 対話による顔編集

  • Talk-to-Edit: Fine-Grained Facial Editing via Dialog [79.9]
    Talk-to-Editは対話型顔編集フレームワークで、ユーザーとシステム間の対話を通じて微粒な属性操作を行う。 我々の重要な洞察は、GANラテント空間における連続的な「セマンティックフィールド」をモデル化することである。 本システムは,ユーザからの要求とセマンティックフィールドの状態の両方を考慮し,言語フィードバックを生成する。
    論文  参考訳(メタデータ)   (Thu, 9 Sep 2021 17:17:59 GMT)
    • 自然なやりとりによって(例えば「もう少し笑って」と入力)顔画像を編集するフレームワークを提案、より連続的に変化させられるモデルを構築できたとのこと。システム実現のため自然言語と画像の組み合わせであるCelebA-Dialogというデータセットを作成、公開している。
    • プロジェクトサイトはhttps://www.mmlab-ntu.com/project/talkedit/、画像を見るとどのようなものかよく分かる。リポジトリはhttps://github.com/yumingj/Talk-to-Edit、Colabでモデルを試すことも可能でとても面白い。

Datasets: Hugging faceのデータセット

  • Datasets: A Community Library for Natural Language Processing [55.5]
    データセットは、現代のNLPのためのコミュニティライブラリである。 このライブラリには650以上のユニークなデータセットが含まれており、250以上のコントリビュータを抱えており、さまざまな新しいクロスデータセット研究プロジェクトを支援している。
    論文  参考訳(メタデータ)   (Tue, 7 Sep 2021 03:59:22 GMT)
    • みんな大好き(?)Huggingfaceとコミュニティが整備したデータセットライブラリ。幅広いデータセットが使いやすく整備されている。
    • リポジトリはhttps://github.com/huggingface/datasets、「pip install datasets」はすごいコマンドだなとも。

CREAK: 常識を推論するためのデータセット

  • CREAK: A Dataset for Commonsense Reasoning over Entity Knowledge [32.6]
    エンティティ知識に関するコモンセンス推論のためのテストベッドであるCREAKを紹介する。 私たちのデータセットは、真か偽かのエンティティに関する主張で構成されています。 クラウドワーカーはこれらのステートメントを簡単に見つけ出すことができ、データセット上での人間のパフォーマンスは高い。
    論文  参考訳(メタデータ)   (Fri, 3 Sep 2021 17:56:40 GMT)
    •  Commonsense reasoning タスクのデータセット、データ数は約13Kで単文のクレームとその真偽(+説明文)で構成される。文を「読解」しなくても解けるような特徴(アーティファクト)が無いか丁寧に確認されているなど品質の高いデータとの印象。
      • ただ、CREAKが何の略か不明だった・・・
    • WEBサイトはhttps://www.cs.utexas.edu/~yasumasa/creak/

MultiEURLEX : ゼロショットマルチリンガルTranferのためのデータセット

  • MultiEURLEX — A multi-lingual and multi-label legal document classification dataset for zero-shot cross-lingual transfer [13.2]
    法律文書のトピック分類のための多言語データセットであるMulti-EURLEXを紹介する。 データセットは、正式に23言語に翻訳された65kの欧州連合(EU)の法律で構成され、EUROVOC分類の複数のラベルが注釈付けされている。 そこで、ある言語(ソース)の注釈付きトレーニング文書を利用して、別の言語(ターゲット)のドキュメントを分類します。
    論文  参考訳(メタデータ)  参考訳(全文)  (Thu, 2 Sep 2021 12:52:55 GMT)
    • EUの法律とその翻訳文書を活用したデータセットを作成、マルチリンガルモデルを活用してゼロショットの対応が可能か検証するデータセットとしての活用を提案。いくつかの手法を試しておりfine-tuningの効率化を狙ったadaptation strategies(https://arxiv.org/abs/1902.00751など)が多言語をゼロショットで転送する場合にも有効としている。
    • リポジトリはhttps://github.com/nlpaueb/multi-eurlex
    • マルチリンガルなゼロショットは非常に面白く実社会に対する影響が大きい(達成されると言語の壁が無くなる)ので、このようなデータセットが整備されるのは重要だと思う。adapterが効果的に機能するという報告も興味深い。