コンテンツへスキップ
- TabLLM: Few-shot Classification of Tabular Data with Large Language Models [66.0]
大規模言語モデルのゼロショットおよび少数ショット分類への応用について検討する。 テンプレートやテーブル・ツー・テキストモデル,大規模言語モデルなど,いくつかのシリアライズ手法を評価する。 このアプローチは、勾配木のような強力な伝統的なベースラインとも競合する。
論文 参考訳(メタデータ) (Wed, 19 Oct 2022 17:08:13 GMT)- 大規模言語モデルを用いたテーブルデータ処理。(現実的に使えるかは置いておいて)few-shot設定では優れた性能。言語モデルで取り扱えるようにする過程で情報が与えられているようにも思うが、これはこれで新たなモデル構築のように見えなくもない。
- A Win-win Deal: Towards Sparse and Robust Pre-trained Language Models [53.9]
大規模言語モデル(PLM)はメモリフットプリントと計算の点で非効率である。 PLMはデータセットバイアスに頼り、アウト・オブ・ディストリビューション(OOD)データへの一般化に苦慮する傾向にある。 最近の研究では、高密度PLMは、性能を損なうことなくスパースサブネットに置き換えることができることが示されている。
論文 参考訳(メタデータ) (Tue, 11 Oct 2022 07:26:34 GMT)
- Ask Me Anything: A simple strategy for prompting language models [24.3]
大規模言語モデル(LLM)は、単にタスクの実行方法を示す自然言語プロンプトを与えられただけで、追加のトレーニングは行われない。本研究では,質問応答(QA)のプロンプトが,モデル出力を制限するプロンプトよりも優れていることを示す。 収集したプロンプトを適用して、入力の真のラベルに対していくつかのノイズの多い投票を行う。 プロンプトは、非常に異なる精度と複雑な依存関係を持つことができる。
論文 参考訳(メタデータ) (Thu, 6 Oct 2022 06:39:56 GMT)