コンテンツへスキップ
- Camouflaged Image Synthesis Is All You Need to Boost Camouflaged Detection [65.9]
本研究では,カモフラージュデータの合成フレームワークを提案する。 提案手法では,既存の物体検出モデルのトレーニングに使用可能な,現実的なカモフラージュ画像の生成に生成モデルを用いる。 我々のフレームワークは3つのデータセット上で最先端の手法より優れています。
論文 参考訳(メタデータ) (Sun, 13 Aug 2023 06:55:05 GMT)
- camouflaged object detectionに合成データを用いるアプローチを提案、複数のデータでSoTAを主張。データ生成はGANベースとのこと。
- 正直やや意外な結果、カモフラージュデータの生成の方が物体検出より容易とのことなのだろうか・・・?
- When Super-Resolution Meets Camouflaged Object Detection: A Comparison Study [135.2]
Super Resolution (SR) と Camouflaged Object Detection (COD) は、コンピュータビジョンにおける様々なジョイントアプリケーションとのホットトピックである。 我々は、一般的なCODデータセット上で異なる超解像法をベンチマークする。 SR法により処理されたCODデータを用いて,異なるCODモデルのロバスト性を評価する。
論文 参考訳(メタデータ) (Tue, 8 Aug 2023 16:17:46 GMT)
- カモフラージュされたものに対するObject Detectionと超解像のサーベイ。
- 超シンプルにやるとどうなるんだろうという気もしなくはない