Vera: A General-Purpose Plausibility Estimation Model for Commonsense Statements

  • Vera: A General-Purpose Plausibility Estimation Model for Commonsense Statements [109.9]
    本稿では,コモンセンス知識に基づく宣言文の妥当性を推定する汎用モデルであるVeraを紹介する。 19のQAデータセットと2つの大規模ナレッジベースから生成された7Mのコモンセンスステートメントに基づいてトレーニングされた。 Vera は LM 生成したコモンセンス知識のフィルタリングに優れており,ChatGPT などのモデルが生成する誤ったコモンセンス文を実環境で検出するのに有用である。
    論文  参考訳(メタデータ)   (Fri, 5 May 2023 17:15:32 GMT)
  • LLMが生成する文書をフィルタリングするような用途で使える常識の推測モデルの提案。既存データセットをうまく使い、LLM+プロンプトよりもかなり性能が高い。生成分を何らかの方法で検証するような動きは有用だと思う
  • デモがVera – a Hugging Face Space by liujch1998にある

CLEVER: CKE as a distantLy supErVised multi-instancE leaRning

  • Visually Grounded Commonsense Knowledge Acquisition [132.4]
    大規模なコモンセンス知識ベースは、幅広いAIアプリケーションを促進する。 視覚知覚には、現実世界の実体に関する豊富な常識知識が含まれる。 本稿では,遠隔教師付きマルチインスタンス学習問題としてCKEを定式化するCLEVERを提案する。
    論文  参考訳(メタデータ)   (Tue, 22 Nov 2022 07:00:16 GMT)
  • vision-language pre-training model + 画像をソースとしたdistantly supervised learningでCommonsense Knowledgeを抽出する取り組み
  • リポジトリはthunlp/CLEVER (github.com)

KEAR(Knowledge External Attention for Reasoning ): 回答に常識が必要なCommonsenseQAで人間に匹敵

  • Human Parity on CommonsenseQA: Augmenting Self-Attention with External Attention [66.9]
    本稿では,外部の知識や状況に配慮した外部アテンション機構を備えたトランスフォーマーアーキテクチャの強化を提案する。 提案した外部注意機構は,既存のAIシステムの性能を大幅に向上させることができる。 提案システムは、オープンなCommonsenseQA研究ベンチマークにおいて、89.4%の精度で人間の88.9%に匹敵する。
    論文  参考訳(メタデータ)   (Mon, 6 Dec 2021 18:59:02 GMT)
    • Knowledge Graph、Dictionary、Training Dataを外部知識として活用可能な構造を提案、CommonsenseQAで89.4%と人の精度に匹敵する性能を達成。
    • リーダーボードはLeaderboard | tau-nlp