OpenThoughts: Data Recipes for Reasoning Models

  • OpenThoughts: Data Recipes for Reasoning Models [215.2]
    OpenThoughtsプロジェクトは、推論モデルをトレーニングするためのオープンソースのデータセットを作成することだ。 OpenThoughts2-1Mデータセットは、公開推論データに基づいてトレーニングされた最初のモデルであるOpenThinker2-32Bに導かれた。 OpenThinker3-7Bモデル。
    論文  参考訳(メタデータ)   (Wed, 04 Jun 2025 17:25:39 GMT)
  • LRM構築のためのオープンデータセット。データ拡張の方向性としても参考になる。
  • プロジェクトサイトはOpen Thoughts

DreamGen: Unlocking Generalization in Robot Learning through Neural Trajectories

  • DreamGen: Unlocking Generalization in Robot Learning through Neural Trajectories [120.3]
    DreamGenは、ニューラルトラジェクトリを通じて行動や環境を一般化するロボットポリシーをトレーニングするためのパイプラインだ。 私たちの研究は、手作業によるデータ収集を超えて、ロボット学習をスケールするための、有望な新たな軸を確立します。
    論文  参考訳(メタデータ)   (Mon, 19 May 2025 04:55:39 GMT)
  • 「This pipeline is designed to be general-purpose across different robots, environments, and tasks. (1) We fine-tune video world models on a target robot to capture the dynamics and kinematics of the specific embodiment; (2) we prompt the model with pairs of initial frames and language instructions to generate large volumes of robot videos, capturing both familiar behaviors from fine-tuning and novel ones in unseen settings; (3) we then extract pseudo-actions using either a latent action model [13] or an inverse dynamics model (IDM)[14]; (4) finally, we use the resulting video-action sequence pairs, dubbed neural trajectories, for training downstream visuomotor policies.」と動画生成モデルを活用したデータ合成手法の提案。イメージトレーニングのようで面白い。
  • プロジェクトサイトはDreamGen

SimVS: Simulating World Inconsistencies for Robust View Synthesis 

  • SimVS: Simulating World Inconsistencies for Robust View Synthesis [102.8]
    本稿では、生成ビデオモデルを利用して、キャプチャ中に起こりうる世界の不整合をシミュレートする手法を提案する。 我々の世界シミュレーション戦略は、現実のシーンのバリエーションを扱う上で、従来の拡張手法よりも大幅に優れていることを実証する。
    論文  参考訳(メタデータ)   (Tue, 10 Dec 2024 17:35:12 GMT)
  • 「Our approach augments existing multiview datasets with inconsistencies simulated by a video diffusion model and trains a multiview harmonization model to sample sets of consistent views of a scene conditioned on sparse inconsistent captures. We can then use existing 3D reconstruction and view synthesis techniques to synthesize novel viewpoints from these consistent images.」とのこと。面白いデータ拡張のアプローチでプロジェクトサイトを見るに効果も高いよう。
  • プロジェクトサイトはSimVS: Simulating World Inconsistencies for Robust View Synthesis

A Survey on Data Synthesis and Augmentation for Large Language Models

  • A Survey on Data Synthesis and Augmentation for Large Language Models [35.6]
    本稿では,大規模言語モデルのライフサイクルを通じてデータ生成手法をレビューし,要約する。 これらの手法が直面する現在の制約について考察し,今後の開発・研究の道筋について考察する。
    論文  参考訳(メタデータ)   (Wed, 16 Oct 2024 16:12:39 GMT)
  • 重要性が増すLLMに関するデータ合成のサーベイ

Leveraging Web-Crawled Data for High-Quality Fine-Tuning

  • Leveraging Web-Crawled Data for High-Quality Fine-Tuning [24.2]
    我々は、GPT-4のような先進的なモデルに頼ることなく、高品質な教師付き微調整のための貴重な情報源として、Webcrawled Dataが有効であると主張している。 我々は、Webcrawledデータをより小さな高品質なデータ集合と整列させることで、ペア化されたトレーニングデータセットを自動生成する。 実験の結果, モデル変換データを用いた学習は, 中国における数学問題の平均スコア9.4%で, 高品質なデータのみによるトレーニングを上回り, より良い結果が得られることがわかった。
    論文  参考訳(メタデータ)   (Thu, 15 Aug 2024 08:12:52 GMT)
  • 「Drawing on the intuition that rewriting data is comparatively simpler than performing intricate reasoning tasks for LLMs, we propose a method to augment the dataset by converting web-crawled data into high-quality ones.」という手法の提案。小規模なシードデータと大規模なクローリングデータのマッチングをとり、専用モデルを作るアプローチ。クリーニングが大変なのが伝わってくる。数学的な問題のバリエーションはとても多そうだけど、この方針でうまくいくのはなぜなのだろうか。。。(有名な問題の別解情報が使われているんだろうか)
  • リポジトリはGitHub – zhouj8553/Web_to_SFT: official code for the paper “Leveraging Web-Crawled Data for High-Quality Fine-Tuning”

LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement 

  • LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement [79.3]
    事前訓練された大規模言語モデル(LLM)は、現在、自然言語処理タスクの大部分を解決するための最先端技術である。 LLM2LLMは、教師のLLMを使って小さなシードデータセットを強化するデータ拡張戦略である。 GSM8Kデータセットでは最大24.2%、CaseHOLDでは32.6%、SNIPSでは32.0%、TRECでは52.6%、SST-2では39.8%の改善が達成された。
    論文  参考訳(メタデータ)   (Sat, 13 Jul 2024 07:36:49 GMT)
  • fine tuning用のデータを拡張していくフレームワークの提案。間違った部分に注目するアプローチでLlama-2-7Bを用いて有効性を検証とのこと。
  • リポジトリはGitHub – SqueezeAILab/LLM2LLM: [ACL 2024] LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement

A Comprehensive Survey on Data Augmentation 

  • A Comprehensive Survey on Data Augmentation [55.4]
    データ拡張(Data augmentation)は、既存のデータサンプルを操作することによって高品質な人工データを生成する技術である。 既存の文献調査では、特定のモダリティデータにのみ焦点が当てられている。 本稿では,異なる共通データモダリティのためのデータ拡張技術を含む,より啓蒙的な分類法を提案する。
    論文  参考訳(メタデータ)   (Wed, 15 May 2024 11:58:08 GMT)
  • データ拡張のサーベイ。生成AIを用いた手法も含まれる。

Adaptive inflation

  • Do Generated Data Always Help Contrastive Learning? [32.6]
    コントラスト学習(CL)は、教師なし視覚表現学習において最も成功したパラダイムの1つである。 生成モデル、特に拡散モデルの増加に伴い、実際のデータ分布に近い現実的な画像を生成する能力はよく認識されている。 しかし、生成したデータ(DDPMのような優れた拡散モデルからでも)は、コントラスト学習に害を与えることもある。
    論文  参考訳(メタデータ)   (Tue, 19 Mar 2024 05:17:47 GMT)
  • 合成データ+データ拡張はうまくいかないことが多い。その分析と対応方法をまとめた論文。強力な画像生成モデルによる合成データ活用が検討されるなか、重要な報告だと思う。
  • リポジトリはPKU-ML/adainf: Official code for ICLR 2024 paper Do Generated Data Always Help Contrastive Learning? (github.com)

Data Augmentation for Conversational AI

  • Data Augmentation for Conversational AI [17.5]
    データ拡張(DA)は、会話システムにおけるデータ不足問題を軽減するための感情的なアプローチである。 このチュートリアルは、会話システムのコンテキストにおけるDAアプローチの包括的で最新の概要を提供する。
    論文  参考訳(メタデータ)   (Sat, 9 Sep 2023 09:56:35 GMT)
  • 対話データのデータ拡張に関するCIKMのチュートリアル。プロジェクトサイトはData Augmentation for Conversational AI | Fundamentals and Advances (dataug-convai.github.io)
  • 現時点では資料などアップロードされていないが面白そう。

ChatGPT as Data Augmentation for Compositional Generalization: A Case Study in Open Intent Detection

  • ChatGPT as Data Augmentation for Compositional Generalization: A Case Study in Open Intent Detection [30.1]
    本稿では,ChatGPTをデータ拡張技術として活用し,オープンな意図検出タスクにおける合成一般化を強化するケーススタディを提案する。 本稿では,ChatGPTが生成した合成データをトレーニングプロセスに組み込むことで,モデル性能を効果的に改善できることを実証する。
    論文  参考訳(メタデータ)   (Fri, 25 Aug 2023 17:51:23 GMT)
  • ChatGPTを用いたデータ拡張に効果があったとの論文。LLMの知識がパラフレージングなどに有効というのは納得感がある。