- LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement [79.3]
事前訓練された大規模言語モデル(LLM)は、現在、自然言語処理タスクの大部分を解決するための最先端技術である。 LLM2LLMは、教師のLLMを使って小さなシードデータセットを強化するデータ拡張戦略である。 GSM8Kデータセットでは最大24.2%、CaseHOLDでは32.6%、SNIPSでは32.0%、TRECでは52.6%、SST-2では39.8%の改善が達成された。
論文 参考訳(メタデータ) (Sat, 13 Jul 2024 07:36:49 GMT) - fine tuning用のデータを拡張していくフレームワークの提案。間違った部分に注目するアプローチでLlama-2-7Bを用いて有効性を検証とのこと。
- リポジトリはGitHub – SqueezeAILab/LLM2LLM: [ACL 2024] LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement