- DataComp-LM: In search of the next generation of training sets for language models [193.3]
DataComp for Language Models (DCLM)は、制御されたデータセット実験のためのテストベッドであり、言語モデルを改善することを目的としている。 我々は、Common Crawlから抽出された240Tトークンの標準化コーパス、OpenLMフレームワークに基づく効果的な事前学習レシピ、53の下流評価スイートを提供する。 DCLMベンチマークの参加者は、412Mから7Bパラメータのモデルスケールでの重複、フィルタリング、データ混合などのデータキュレーション戦略を実験することができる。
論文 参考訳(メタデータ) (Mon, 17 Jun 2024 17:42:57 GMT) - 言語モデルトレーニング時のデータキュレーションのためのベンチマークDataComp for Language Models (DCLM)の提案。重要なベンチマークで小さめのトラックも用意されている(最小トラックは412Mパラメータ、8.2B学習用トークン(元データ469B)、学習用の計算量は2.0e19FLOPs、H100換算で26時間)が、それにしても参加するにも結構な環境が必要そう。。。
- プロジェクトサイトはDataComp
関連するものとして下記論文も参考になる。
- Data-Centric AI in the Age of Large Language Models [51.2]
本稿では,大規模言語モデル(LLM)に着目した,AI研究におけるデータ中心の視点を提案する。 本研究では,LLMの発達段階(事前学習や微調整など)や推論段階(文脈内学習など)において,データが有効であることを示す。 データを中心とした4つのシナリオを特定し、データ中心のベンチマークとデータキュレーション、データ属性、知識伝達、推論コンテキスト化をカバーします。
論文 参考訳(メタデータ) (Thu, 20 Jun 2024 16:34:07 GMT) - LLMの時代においてもデータは重要、DataCOMPについては「DataComp is a more suitable starting point due to its scale and the promising initial findings.」と記載。